1,207 research outputs found

    On Neuromechanical Approaches for the Study of Biological Grasp and Manipulation

    Full text link
    Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas

    Task-Driven Hybrid Model Reduction for Dexterous Manipulation

    Full text link
    In contact-rich tasks, like dexterous manipulation, the hybrid nature of making and breaking contact creates challenges for model representation and control. For example, choosing and sequencing contact locations for in-hand manipulation, where there are thousands of potential hybrid modes, is not generally tractable. In this paper, we are inspired by the observation that far fewer modes are actually necessary to accomplish many tasks. Building on our prior work learning hybrid models, represented as linear complementarity systems, we find a reduced-order hybrid model requiring only a limited number of task-relevant modes. This simplified representation, in combination with model predictive control, enables real-time control yet is sufficient for achieving high performance. We demonstrate the proposed method first on synthetic hybrid systems, reducing the mode count by multiple orders of magnitude while achieving task performance loss of less than 5%. We also apply the proposed method to a three-fingered robotic hand manipulating a previously unknown object. With no prior knowledge, we achieve state-of-the-art closed-loop performance within a few minutes of online learning, by collecting only a few thousand environment samples.Comment: Reproducing code: https://github.com/wanxinjin/Task-Driven-Hybrid-Reduction. This is a preprint. The published version can be accessed at IEEE Transactions on Robotic

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    On neuromechanical approaches for the study of biological and robotic grasp and manipulation

    Get PDF
    abstract: Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank and open-minded assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas at the interface of neuromechanics, neuroscience, rehabilitation and robotics.The electronic version of this article is the complete one and can be found online at: https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-017-0305-

    Architectures for online simulation-based inference applied to robot motion planning

    Get PDF
    Robotic systems have enjoyed significant adoption in industrial and field applications in structured environments, where clear specifications of the task and observations are available. Deploying robots in unstructured and dynamic environments remains a challenge, being addressed through emerging advances in machine learning. The key open issues in this area include the difficulty of achieving coverage of all factors of variation in the domain of interest, satisfying safety constraints, etc. One tool that has played a crucial role in addressing these issues is simulation - which is used to generate data, and sometimes as a world representation within the decision-making loop. When physical simulation modules are used in this way, a number of computational problems arise. Firstly, a suitable simulation representation and fidelity is required for the specific task of interest. Secondly, we need to perform parameter inference of physical variables being used in the simulation models. Thirdly, there is the need for data assimilation, which must be achieved in real-time if the resulting model is to be used within the online decision-making loop. These are the motivating problems for this thesis. In the first section of the thesis, we tackle the inference problem with respect to a fluid simulation model, where a sensorised UAV performs path planning with the objective of acquiring data including gas concentration/identity and IMU-based wind estimation readings. The task for the UAV is to localise the source of a gas leak, while accommodating the subsequent dispersion of the gas in windy conditions. We present a formulation of this problem that allows us to perform online and real-time active inference efficiently through problem-specific simplifications. In the second section of the thesis, we explore the problem of robot motion planning when the true state is not fully observable, and actions influence how much of the state is subsequently observed. This is motivated by the practical problem of a robot performing suction in the surgical automation setting. The objective is the efficient removal of liquid while respecting a safety constraint - to not touch the underlying tissue if possible. If the problem were represented in full generality, as one of planning under uncertainty and hidden state, it could be hard to find computationally efficient solutions. Once again, we make problem-specific simplifications. Crucially, instead of reasoning in general about fluid flows and arbitrary surfaces, we exploit the observations that the decision can be informed by the contour tree skeleton of the volume, and the configurations in which the fluid would come to rest if unperturbed. This allows us to address the problem as one of iterative shortest path computation, whose costs are informed by a model estimating the shape of the underlying surface. In the third and final section of the thesis, we propose a model for real-time parameter estimation directly from raw pixel observations. Through the use of a Variational Recurrent Neural Network model, where the latent space is further structured by penalising for fit to data from a physical simulation, we devise an efficient online inference scheme. This is first shown in the context of a representative dynamic manipulation task for a robot. This task involves reasoning about a bouncing ball that it must catch – using as input the raw video from an environment-mounted camera and accommodating noise and variations in the object and environmental conditions. We then show that the same architecture lends itself to solving inference problems involving more complex dynamics, by applying this to measurement inversion of ultrafast X-Ray scattering data to infer molecular geometry

    A Survey on Physics Informed Reinforcement Learning: Review and Open Problems

    Full text link
    The inclusion of physical information in machine learning frameworks has revolutionized many application areas. This involves enhancing the learning process by incorporating physical constraints and adhering to physical laws. In this work we explore their utility for reinforcement learning applications. We present a thorough review of the literature on incorporating physics information, as known as physics priors, in reinforcement learning approaches, commonly referred to as physics-informed reinforcement learning (PIRL). We introduce a novel taxonomy with the reinforcement learning pipeline as the backbone to classify existing works, compare and contrast them, and derive crucial insights. Existing works are analyzed with regard to the representation/ form of the governing physics modeled for integration, their specific contribution to the typical reinforcement learning architecture, and their connection to the underlying reinforcement learning pipeline stages. We also identify core learning architectures and physics incorporation biases (i.e., observational, inductive and learning) of existing PIRL approaches and use them to further categorize the works for better understanding and adaptation. By providing a comprehensive perspective on the implementation of the physics-informed capability, the taxonomy presents a cohesive approach to PIRL. It identifies the areas where this approach has been applied, as well as the gaps and opportunities that exist. Additionally, the taxonomy sheds light on unresolved issues and challenges, which can guide future research. This nascent field holds great potential for enhancing reinforcement learning algorithms by increasing their physical plausibility, precision, data efficiency, and applicability in real-world scenarios
    • …
    corecore