69 research outputs found

    Cryptanalysis of public-key cryptosystems that use subcodes of algebraic geometry codes

    Get PDF
    We give a polynomial time attack on the McEliece public key cryptosystem based on subcodes of algebraic geometry (AG) codes. The proposed attack reposes on the distinguishability of such codes from random codes using the Schur product. Wieschebrink treated the genus zero case a few years ago but his approach cannot be extent straightforwardly to other genera. We address this problem by introducing and using a new notion, which we call the t-closure of a code

    Improving the efficiency of the LDPC code-based McEliece cryptosystem through irregular codes

    Full text link
    We consider the framework of the McEliece cryptosystem based on LDPC codes, which is a promising post-quantum alternative to classical public key cryptosystems. The use of LDPC codes in this context allows to achieve good security levels with very compact keys, which is an important advantage over the classical McEliece cryptosystem based on Goppa codes. However, only regular LDPC codes have been considered up to now, while some further improvement can be achieved by using irregular LDPC codes, which are known to achieve better error correction performance than regular LDPC codes. This is shown in this paper, for the first time at our knowledge. The possible use of irregular transformation matrices is also investigated, which further increases the efficiency of the system, especially in regard to the public key size.Comment: 6 pages, 3 figures, presented at ISCC 201

    Structural Properties of Twisted Reed-Solomon Codes with Applications to Cryptography

    Full text link
    We present a generalisation of Twisted Reed-Solomon codes containing a new large class of MDS codes. We prove that the code class contains a large subfamily that is closed under duality. Furthermore, we study the Schur squares of the new codes and show that their dimension is often large. Using these structural properties, we single out a subfamily of the new codes which could be considered for code-based cryptography: These codes resist some existing structural attacks for Reed-Solomon-like codes, i.e. methods for retrieving the code parameters from an obfuscated generator matrix.Comment: 5 pages, accepted at: IEEE International Symposium on Information Theory 201

    Using LDGM Codes and Sparse Syndromes to Achieve Digital Signatures

    Full text link
    In this paper, we address the problem of achieving efficient code-based digital signatures with small public keys. The solution we propose exploits sparse syndromes and randomly designed low-density generator matrix codes. Based on our evaluations, the proposed scheme is able to outperform existing solutions, permitting to achieve considerable security levels with very small public keys.Comment: 16 pages. The final publication is available at springerlink.co
    • …
    corecore