2 research outputs found

    Information transfer fidelity in spin networks and ring-based quantum routers

    Get PDF
    Spin networks are endowed with an Information Transfer Fidelity (ITF), which defines an absolute upper bound on the probability of transmission of an excitation from one spin to another. The ITF is easily computable but the bound can be reached asymptotically in time only under certain conditions. General conditions for attainability of the bound are established and the process of achieving the maximum transfer probability is given a dynamical model, the translation on the torus. The time to reach the maximum probability is estimated using the simultaneous Diophantine approximation, implemented using a variant of the Lenstra-Lenstra-Lov\'asz (LLL) algorithm. For a ring with uniform couplings, the network can be made a metric space by defining a distance (satisfying the triangle inequality) that quantifies the lack of transmission fidelity between two nodes. It is shown that transfer fidelities and transfer times can be improved significantly by means of simple controls taking the form of non-dynamic, spatially localized bias fields, opening up the possibility for intelligent design of spin networks and dynamic routing of information encoded in them, while being more flexible than engineering fixed couplings to favor some transfers, and less demanding than control schemes requiring fast dynamic controls

    Control of Quantum Spin Devices, feedback control laws and hidden feedback

    No full text
    Networks of interacting spin-1/2 particles form the basis for a wide range of quantum technologies including quantum communication, simulation and computation devices. Optimal control provides methods to steer their dynamics to implement specific quantum operations. It is usually implemented to find optimal time-dependent control fields to implement quantum gates or transformations of quantum states or observables in the context of open-loop quantum control. We recently proposed an alternative approach of static controls, based on shaping the energy landscape of quantum systems. For coupled spin systems this type of control could be realized in terms of spatially distributed gates that introduce energy level shifts using quasi-static local electric or magnetic fields. Although there are insufficient control degrees of freedom for the system to be completely controllable, many practically interesting operations can be implemented using these controls, including efficient transfer of excitations in spin networks. Furthermore, the resulting controllers combine high fidelity and strong robustness properties under device uncertainties, surpassing traditional limits in classical control. In particular, we observe positive correlations between the logarithmic sensitivity and the control error in many cases, i.e., the highest fidelity controllers are also the most robust. Structured singular value analysis shows the same trend for large structured variation using μ\mu-analysis tools. One way to understand the surprising robustness of the controllers is in terms of feedback control laws. The energy biases create direct feedback loops. Similar to feedback loops in electronic circuits such as operational amplifiers, this feedback is highly effective and does not require measurements. I will discuss results on energy landscape control for quantum spin devices with a focus on robustness at high fidelities of the operations and the interpretation of the controllers in terms of feedback control laws. References: [1] Emergence of Classicality under decoherence in robust quantum transport, S. Schirmer, E. Jonckheere, S. Oâ Neil, and F. Langbein, in preparation. [2] Design of Feedback Control Laws for Information Transfer in Spintronics Networks, S Schirmer, E Jonckheere, F Langbein, arXiv:1607.05294, 2016. [3] Time optimal information transfer in spintronics networks, FC Langbein, S Schirmer, E Jonckheere, 2015 IEEE 54th Annual Conference on Decision and Control (CDC), 6454-58, 5, 2015. [4] Structured singular value analysis for spintronics network information transfer control, E Jonckheere, S Schirmer, F Langbein, IEEE Transactions on Automatic Control, DOI: 10.109/TAC.2017.2714623, arXiv:1706.03247, in press, 2017. [5] Jonckheere-Terpstra test for nonclassical error versus log-sensitivity relationship of quantum spin network controllers, E Jonckheere, S Schirmer, F Langbein, arXiv:1612.02784, 2016. [6] Information transfer fidelity in spin networks and ring-based quantum routers, E Jonckheere, F Langbein, S Schirmer, Quantum Information Processing 14 (12), 4751-4785. [7] Multi-fractal Geometry of Finite Networks of Spins, P Bogdan, E Jonckheere, S Schirmer, arXiv:1608.08192, 2016.Non UBCUnreviewedAuthor affiliation: Swansea UniversityResearche
    corecore