885 research outputs found

    Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities

    Full text link
    This monograph presents a unified treatment of single- and multi-user problems in Shannon's information theory where we depart from the requirement that the error probability decays asymptotically in the blocklength. Instead, the error probabilities for various problems are bounded above by a non-vanishing constant and the spotlight is shone on achievable coding rates as functions of the growing blocklengths. This represents the study of asymptotic estimates with non-vanishing error probabilities. In Part I, after reviewing the fundamentals of information theory, we discuss Strassen's seminal result for binary hypothesis testing where the type-I error probability is non-vanishing and the rate of decay of the type-II error probability with growing number of independent observations is characterized. In Part II, we use this basic hypothesis testing result to develop second- and sometimes, even third-order asymptotic expansions for point-to-point communication. Finally in Part III, we consider network information theory problems for which the second-order asymptotics are known. These problems include some classes of channels with random state, the multiple-encoder distributed lossless source coding (Slepian-Wolf) problem and special cases of the Gaussian interference and multiple-access channels. Finally, we discuss avenues for further research.Comment: Further comments welcom

    Exponential Strong Converse for Successive Refinement with Causal Decoder Side Information

    Full text link
    We consider the kk-user successive refinement problem with causal decoder side information and derive an exponential strong converse theorem. The rate-distortion region for the problem can be derived as a straightforward extension of the two-user case by Maor and Merhav (2008). We show that for any rate-distortion tuple outside the rate-distortion region of the kk-user successive refinement problem with causal decoder side information, the joint excess-distortion probability approaches one exponentially fast. Our proof follows by judiciously adapting the recently proposed strong converse technique by Oohama using the information spectrum method, the variational form of the rate-distortion region and H\"older's inequality. The lossy source coding problem with causal decoder side information considered by El Gamal and Weissman is a special case (k=1k=1) of the current problem. Therefore, the exponential strong converse theorem for the El Gamal and Weissman problem follows as a corollary of our result

    Second-Order Coding Rates for Conditional Rate-Distortion

    Full text link
    This paper characterizes the second-order coding rates for lossy source coding with side information available at both the encoder and the decoder. We first provide non-asymptotic bounds for this problem and then specialize the non-asymptotic bounds for three different scenarios: discrete memoryless sources, Gaussian sources, and Markov sources. We obtain the second-order coding rates for these settings. It is interesting to observe that the second-order coding rate for Gaussian source coding with Gaussian side information available at both the encoder and the decoder is the same as that for Gaussian source coding without side information. Furthermore, regardless of the variance of the side information, the dispersion is 1/21/2 nats squared per source symbol.Comment: 20 pages, 2 figures, second-order coding rates, finite blocklength, network information theor

    Fixed-length lossy compression in the finite blocklength regime

    Get PDF
    This paper studies the minimum achievable source coding rate as a function of blocklength nn and probability ϵ\epsilon that the distortion exceeds a given level dd. Tight general achievability and converse bounds are derived that hold at arbitrary fixed blocklength. For stationary memoryless sources with separable distortion, the minimum rate achievable is shown to be closely approximated by R(d)+V(d)nQ−1(ϵ)R(d) + \sqrt{\frac{V(d)}{n}} Q^{-1}(\epsilon), where R(d)R(d) is the rate-distortion function, V(d)V(d) is the rate dispersion, a characteristic of the source which measures its stochastic variability, and Q−1(ϵ)Q^{-1}(\epsilon) is the inverse of the standard Gaussian complementary cdf
    • …
    corecore