4,760,323 research outputs found

    Information criteria for astrophysical model selection

    Get PDF
    Model selection is the problem of distinguishing competing models, perhaps featuring different numbers of parameters. The statistics literature contains two distinct sets of tools, those based on information theory such as the Akaike Information Criterion (AIC), and those on Bayesian inference such as the Bayesian evidence and Bayesian Information Criterion (BIC). The Deviance Information Criterion combines ideas from both heritages; it is readily computed from Monte Carlo posterior samples and, unlike the AIC and BIC, allows for parameter degeneracy. I describe the properties of the information criteria, and as an example compute them from WMAP3 data for several cosmological models. I find that at present the information theory and Bayesian approaches give significantly different conclusions from that data.Comment: 5 pages, no figures. Update to match version accepted by MNRAS Letters. Extra references, minor changes to discussion, no change to conclusion

    Selection of indicators of information society development

    Get PDF
    This paper examines problem of the evaluation of the information society development. The information society is a complex phenomenon and the evaluation of its development is highly complicated. Some indicators are quite similar, others are unrelated, and therefore it is very difficult to interpret the information reflected by the indicators. This article presents the results of a research aimed at identifying the main indicators of the information society development

    Information-based objective functions for active data selection

    Get PDF
    Learning can be made more efficient if we can actively select particularly salient data points. Within a Bayesian learning framework, objective functions are discussed that measure the expected informativeness of candidate measurements. Three alternative specifications of what we want to gain information about lead to three different criteria for data selection. All these criteria depend on the assumption that the hypothesis space is correct, which may prove to be their main weakness

    Rational Value of Information Estimation for Measurement Selection

    Full text link
    Computing value of information (VOI) is a crucial task in various aspects of decision-making under uncertainty, such as in meta-reasoning for search; in selecting measurements to make, prior to choosing a course of action; and in managing the exploration vs. exploitation tradeoff. Since such applications typically require numerous VOI computations during a single run, it is essential that VOI be computed efficiently. We examine the issue of anytime estimation of VOI, as frequently it suffices to get a crude estimate of the VOI, thus saving considerable computational resources. As a case study, we examine VOI estimation in the measurement selection problem. Empirical evaluation of the proposed scheme in this domain shows that computational resources can indeed be significantly reduced, at little cost in expected rewards achieved in the overall decision problem.Comment: 7 pages, 2 figures, presented at URPDM2010; plots fixe

    Seed selection for information cascade in multilayer networks

    Full text link
    Information spreading is an interesting field in the domain of online social media. In this work, we are investigating how well different seed selection strategies affect the spreading processes simulated using independent cascade model on eighteen multilayer social networks. Fifteen networks are built based on the user interaction data extracted from Facebook public pages and tree of them are multilayer networks downloaded from public repository (two of them being Twitter networks). The results indicate that various state of the art seed selection strategies for single-layer networks like K-Shell or VoteRank do not perform so well on multilayer networks and are outperformed by Degree Centrality
    corecore