5 research outputs found

    On the inability of existing security models to cope with data mobility in dynamic organizations

    Get PDF
    Modeling tools play an important role in identifying threats in traditional\ud IT systems, where the physical infrastructure and roles are assumed\ud to be static. In dynamic organizations, the mobility of data outside the\ud organizational perimeter causes an increased level of threats such as the\ud loss of confidential data and the loss of reputation. We show that current\ud modeling tools are not powerful enough to help the designer identify the\ud emerging threats due to mobility of data and change of roles, because they\ud do not include the mobility of IT systems nor the organizational dynamics\ud in the security model. Researchers have proposed security models that\ud particularly focus on data mobility and the dynamics of modern organizations,\ud such as frequent role changes of a person. We show that none\ud of the current security models simultaneously considers the data mobility\ud and organizational dynamics to a satisfactory extent. As a result, none\ud of the current security models effectively identifies the potential security\ud threats caused by data mobility in a dynamic organization

    Modelling Socio-Technical Aspects of Organisational Security

    Get PDF
    Identification of threats to organisations and risk assessment often take into consideration the pure technical aspects, overlooking the vulnerabilities originating from attacks on a social level, for example social engineering, and abstracting away the physical infrastructure. However, attacks on organisations are far from being purely technical. After all, organisations consist of employees. Often the human factor appears to be the weakest point in the security of organisations. It may be easier to break through a system using a social engineering attack rather than a pure technological one. The StuxNet attack is only one of the many examples showing that vulnerabilities of organisations are increasingly exploited on different levels including the human factor. There is an urgent need for integration between the technical and social aspects of systems in assessing their security. Such an integration would close this gap, however, it would also result in complicating the formal treatment and automatic identification of attacks. This dissertation shows that applying a system modelling approach to sociotechnical systems can be used for identifying attacks on organisations, which exploit various levels of the vulnerabilities of the systems. In support of this claim we present a modelling framework, which combines many features. Based on a graph, the framework presents the physical infrastructure of an organisation, where actors and data are modelled as nodes in this graph. Based on the semantics of the underlying process calculus, we develop a formal analytical approach that generates attack trees from the model. The overall goal of the framework is to predict, prioritise and minimise the vulnerabilities in organisations by prohibiting the overall attack or at least increasing the difficulty and cost of fulfilling it. We validate our approach using scenarios from IPTV and Cloud Infrastructure case studies

    Socio-Technical Security Modelling: Analysis of State-of-the-Art, Application, and Maturity in Critical Industrial Infrastructure Environments/Domains

    Get PDF
    This study explores the state-of-the-art, application, and maturity of socio-technical security models for industries and sectors dependent on CI and investigates the gap between academic research and industry practices concerning the modelling of both the social and technical aspects of security. Systematic study and critical analysis of literature show that a steady and growing on socio-technical security M&S approaches is emerging, possibly prompted by the growing recognition that digital systems and workplaces do not only comprise technologies, but also social (human) and sometimes physical elements
    corecore