47,822 research outputs found

    Quantum Theory and Time Asymmetry

    Full text link
    The relation between quantum measurement and thermodynamically irreversible processes is investigated. The reduction of the state vector is fundamentally asymmetric in time and shows an observer-relatedness which may explain the double interpretation of the state vector as a representation of physical states as well as of information about them. The concept of relevance being used in all statistical theories of irreversible thermodynamics is shown to be based on the same observer-relatedness. Quantum theories of irreversible processes implicitly use an objectivized process of state vector reduction. The conditions for the reduction are discussed, and I speculate that the final (subjective) observer system might even be carried by a spacetime point.Comment: Latex version of a paper published in 1979 (with minor revisions), 18 page

    Editorial Comment on the Special Issue of "Information in Dynamical Systems and Complex Systems"

    Full text link
    This special issue collects contributions from the participants of the "Information in Dynamical Systems and Complex Systems" workshop, which cover a wide range of important problems and new approaches that lie in the intersection of information theory and dynamical systems. The contributions include theoretical characterization and understanding of the different types of information flow and causality in general stochastic processes, inference and identification of coupling structure and parameters of system dynamics, rigorous coarse-grain modeling of network dynamical systems, and exact statistical testing of fundamental information-theoretic quantities such as the mutual information. The collective efforts reported herein reflect a modern perspective of the intimate connection between dynamical systems and information flow, leading to the promise of better understanding and modeling of natural complex systems and better/optimal design of engineering systems

    From Knowledge, Knowability and the Search for Objective Randomness to a New Vision of Complexity

    Full text link
    Herein we consider various concepts of entropy as measures of the complexity of phenomena and in so doing encounter a fundamental problem in physics that affects how we understand the nature of reality. In essence the difficulty has to do with our understanding of randomness, irreversibility and unpredictability using physical theory, and these in turn undermine our certainty regarding what we can and what we cannot know about complex phenomena in general. The sources of complexity examined herein appear to be channels for the amplification of naturally occurring randomness in the physical world. Our analysis suggests that when the conditions for the renormalization group apply, this spontaneous randomness, which is not a reflection of our limited knowledge, but a genuine property of nature, does not realize the conventional thermodynamic state, and a new condition, intermediate between the dynamic and the thermodynamic state, emerges. We argue that with this vision of complexity, life, which with ordinary statistical mechanics seems to be foreign to physics, becomes a natural consequence of dynamical processes.Comment: Phylosophica
    corecore