90 research outputs found

    Swarm SLAM: Challenges and Perspectives

    Get PDF
    A robot swarm is a decentralized system characterized by locality of sensing and communication, self-organization, and redundancy. These characteristics allow robot swarms to achieve scalability, flexibility and fault tolerance, properties that are especially valuable in the context of simultaneous localization and mapping (SLAM), specifically in unknown environments that evolve over time. So far, research in SLAM has mainly focused on single- and centralized multi-robot systems—i.e., non-swarm systems. While these systems can produce accurate maps, they are typically not scalable, cannot easily adapt to unexpected changes in the environment, and are prone to failure in hostile environments. Swarm SLAM is a promising approach to SLAM as it could leverage the decentralized nature of a robot swarm and achieve scalable, flexible and fault-tolerant exploration and mapping. However, at the moment of writing, swarm SLAM is a rather novel idea and the field lacks definitions, frameworks, and results. In this work, we present the concept of swarm SLAM and its constraints, both from a technical and an economical point of view. In particular, we highlight the main challenges of swarm SLAM for gathering, sharing, and retrieving information. We also discuss the strengths and weaknesses of this approach against traditional multi-robot SLAM. We believe that swarm SLAM will be particularly useful to produce abstract maps such as topological or simple semantic maps and to operate under time or cost constraints

    Intrinsic and environmental factors modulating autonomous robotic search under high uncertainty

    Full text link
    Autonomous robotic search problems deal with different levels of uncertainty. When uncertainty is low, deterministic strategies employing available knowledge result in most effective searches. However, there are domains where uncertainty is always high since information about robot location, environment boundaries or precise reference points is unattainable, e.g., in cave, deep ocean, planetary exploration, or upon sensor or communications impairment. Furthermore, latency regarding when search targets move, appear or disappear add to uncertainty sources. Here we study intrinsic and environmental factors that affect low-informed robotic search based on diffusive Brownian, naive ballistic, and superdiffusive strategies (Lévy walks), and in particular, the effectiveness of their random exploration. Representative strategies were evaluated considering both intrinsic (motion drift, energy or memory limitations) and extrinsic factors (obstacles and search boundaries). Our results point towards minimum-knowledge based modulation approaches that can adjust distinct spatial and temporal aspects of random exploration to lead to effective autonomous search under uncertaintyThis work was supported in part by Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER), under Grants PGC2018-095895-B-I00, TIN2017-84452-R, and PID2020-114867RB-I0

    Enhanced foraging in robot swarms using collective Lévy walks

    Get PDF
    A key aspect of foraging in robot swarms is optimizing the search efficiency when both the environment and target density are unknown. Hence, designing optimal exploration strategies is desirable. This paper proposes a novel approach that extends the individual Lévy walk to a collective one. To achieve this, we adjust the individual motion through applying an artificial potential field method originating from local communication. We demonstrate the effectiveness of the enhanced foraging by confirming that the collective trajectory follows a heavy-tailed distribution over a wide range of swarm sizes. Additionally, we study target search efficiency of the proposed algorithm in comparison with the individual Lévy walk for two different types of target distributions: homogeneous and heterogeneous. Our results highlight the advantages of the proposed approach for both target distributions, while increasing the scalability to large swarm sizes. Finally, we further extend the individual exploration algorithm by adapting the Lévy walk parameter α, altering the motion pattern based on a local estimation of the target density. This adaptive behavior is particularly useful when targets are distributed in patches

    Exploration and Mapping using a Sparse Robot Swarm: Simulation Results

    Get PDF
    This research report is a companion to the following paper: Atlas: Explorationand Mapping with a Sparse Swarm of Networked IoT Robots. Razanne Abu-Aisheh, FrancescoBronzino, Myriana Rifai, Brian Kilberg, Kris Pister, Thomas Watteyne. Workshop on WirelessSensors and Drones in Internet of Things (Wi-DroIT), part of DCOSS, 2020. It expands thatpaper by providing more detailed explanations and more complete results.Exploration and mapping is a fundamental capability of a swarm of robots: robots enter anunknown area, explore it, and collectively build a map of it. This capability is important regard-less of whether the robots are crawling, flying, or swimming. Existing exploration and mappingalgorithms tend to either be inefficient, or rely on having a dense swarm of robots. This paperintroduces Atlas, an exploration and mapping algorithm for sparse swarms of robots, which com-pletes a full exploration even in the extreme case of a single robot. We develop an open-sourcesimulator and show that Atlas outperforms the state-of-the-art in terms of exploration speed andcompleteness of the resulting map

    採餌問題のための確率的探索戦略の設計と最適化

    Get PDF
    Autonomous robot’s search strategy is the set of rules that it employs while looking for targets in its environment. In this study, the stochastic movement of robots in unknown environments is statistically studied, using a Levy walk method. Biological systems (e.g., foraging animals) provide useful models for designing optimal stochastic search algorithms. Observations of biological systems, ranging from large animals to immune cells, have inspired the design of efficient search strategies that incorporate stochastic movement. In this study, we seek to identify the optimal stochastic strategies for autonomous robots. Given the complexity of interaction between the robot and its environment, optimization must be performed in high-dimensional parameter space. The effect of the explanatory variable on the forger robot movement with the minimum required energy was also studied using experiments done by the response surface methodology (RSM). We analyzed the extent to which search efficiency requires these characteristics, using RSM. Correlation between the involved parameters via a Lévy walk process was examined through designing a setup for the experiments to determine the interaction of the involved variables and the robot movement. The extracted statistical model represents the priority influence of those variables on the robot by developing the statistical model of the mentioned unknown area. The efficiency of a simple strategy was investigated based on Lévy walk search in two-dimensional landscapes with clumped resource distributions. We show how RSM techniques can be used to identify optimal parameter values as well as to describe how sensitive efficiency reacts to the changes in these values. Here, we identified optimal parameter for designing robot by using stochastic search pattern and applying mood-switching criteria on a mixture of speed and sensor and μ to determine how many robots are needed for a solution. Fractal criterion-based robot strategies were more efficient than those based on the resource encounter criterion, and the former was found to be more robust to changes in resource distribution as well.九州工業大学博士学位論文 学位記番号:生工博甲第358号 学位授与年月日:令和元年9月20日1 Introduction|2 Levy Walk|3 Design of Experiment (DOE)|4 Response Surface Methodology|5 Results and Discussions|6 Conclusion九州工業大学令和元年

    Bioinspired approaches for coordination and behaviour adaptation of aerial robot swarms

    Get PDF
    Behavioural adaptation is a pervasive component in a myriad of animal societies. A well-known strategy, known as Levy Walk, has been commonly linked to such adaptation in foraging animals, where the motion of individuals couples periods of localized search and long straight forward motions. Despite the vast number of studies on Levy Walks in computational ecology, it was only in the past decade that the first studies applied this concept to robotics tasks. Therefore, this Thesis draws inspiration from the Levy Walk behaviour, and its recent applications to robotics, to design biologically inspired models for two swarm robotics tasks, aiming at increasing the performance with respect to the state of the art. The first task is cooperative surveillance, where the aim is to deploy a swarm so that at any point in time regions of the domain are observed by multiple robots simultaneously. One of the contributions of this Thesis, is the Levy Swarm Algorithm that augments the concept of Levy Walk to include the Reynolds’ flocking rules and achieve both exploration and coordination in a swarm of unmanned aerial vehicles. The second task is adaptive foraging in environments of clustered rewards. In such environments behavioural adaptation is of paramount importance to modulate the transition between exploitation and exploration. Nature enables these adaptive changes by coupling the behaviour to the fluctuation of hormones that are mostly regulated by the endocrine system. This Thesis draws further inspiration from Nature and proposes a second model, the Endocrine Levy Walk, that employs an Artificial Endocrine System as a modulating mechanism of Levy Walk behaviour. The Endocrine Levy Walk is compared with the Yuragi model (Nurzaman et al., 2010), in both simulated and physical experiments where it shows its increased performance in terms of search efficiency, energy efficiency and number of rewards found. The Endocrine Levy Walk is then augmented to consider social interactions between members of the swarm by mimicking the behaviour of fireflies, where individuals attract others when finding suitable environmental conditions. This extended model, the Endocrine Levy Firefly, is compared to the Levy+ model (Sutantyo et al., 2013) and the Adaptive Collective Levy Walk Nauta et al. (2020). This comparison is also made both in simulated and physical experiments and assessed in terms of search efficiency, number of rewards found and cluster search efficiency, strengthening the argument in favour of the Endocrine Levy Firefly as a promising approach to tackle collaborative foragin

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    Get PDF
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so
    corecore