390,396 research outputs found

    On the capacity of channels with Gaussian and non-Gaussian noise

    Get PDF
    We evaluate the information capacity of channels for which the noise process is a Gaussian measure on a quasi-complete locally convex space. The coding capacity is calculated in this setting and for time-continuous Gaussian channels using the information capacity result. The coding capacity of channels with non-Gaussian noise having finite entropy with respect to Gaussian noise of the same covariance is shown not to exceed the coding capacity of the Gaussian channel. The sensitivity of the information capacity to deviations from normality in the noise process is also investigated

    Probabilistic Monads, Domains and Classical Information

    Full text link
    Shannon's classical information theory uses probability theory to analyze channels as mechanisms for information flow. In this paper, we generalize results of Martin, Allwein and Moskowitz for binary channels to show how some more modern tools - probabilistic monads and domain theory in particular - can be used to model classical channels. As initiated Martin, et al., the point of departure is to consider the family of channels with fixed inputs and outputs, rather than trying to analyze channels one at a time. The results show that domain theory has a role to play in the capacity of channels; in particular, the (n x n)-stochastic matrices, which are the classical channels having the same sized input as output, admit a quotient compact ordered space which is a domain, and the capacity map factors through this quotient via a Scott-continuous map that measures the quotient domain. We also comment on how some of our results relate to recent discoveries about quantum channels and free affine monoids.Comment: In Proceedings DCM 2011, arXiv:1207.682

    Information capacity in the weak-signal approximation

    Full text link
    We derive an approximate expression for mutual information in a broad class of discrete-time stationary channels with continuous input, under the constraint of vanishing input amplitude or power. The approximation describes the input by its covariance matrix, while the channel properties are described by the Fisher information matrix. This separation of input and channel properties allows us to analyze the optimality conditions in a convenient way. We show that input correlations in memoryless channels do not affect channel capacity since their effect decreases fast with vanishing input amplitude or power. On the other hand, for channels with memory, properly matching the input covariances to the dependence structure of the noise may lead to almost noiseless information transfer, even for intermediate values of the noise correlations. Since many model systems described in mathematical neuroscience and biophysics operate in the high noise regime and weak-signal conditions, we believe, that the described results are of potential interest also to researchers in these areas.Comment: 11 pages, 4 figures; accepted for publication in Physical Review

    Delays and the Capacity of Continuous-time Channels

    Get PDF
    Any physical channel of communication offers two potential reasons why its capacity (the number of bits it can transmit in a unit of time) might be unbounded: (1) Infinitely many choices of signal strength at any given instant of time, and (2) Infinitely many instances of time at which signals may be sent. However channel noise cancels out the potential unboundedness of the first aspect, leaving typical channels with only a finite capacity per instant of time. The latter source of infinity seems less studied. A potential source of unreliability that might restrict the capacity also from the second aspect is delay: Signals transmitted by the sender at a given point of time may not be received with a predictable delay at the receiving end. Here we examine this source of uncertainty by considering a simple discrete model of delay errors. In our model the communicating parties get to subdivide time as microscopically finely as they wish, but still have to cope with communication delays that are macroscopic and variable. The continuous process becomes the limit of our process as the time subdivision becomes infinitesimal. We taxonomize this class of communication channels based on whether the delays and noise are stochastic or adversarial; and based on how much information each aspect has about the other when introducing its errors. We analyze the limits of such channels and reach somewhat surprising conclusions: The capacity of a physical channel is finitely bounded only if at least one of the two sources of error (signal noise or delay noise) is adversarial. In particular the capacity is finitely bounded only if the delay is adversarial, or the noise is adversarial and acts with knowledge of the stochastic delay. If both error sources are stochastic, or if the noise is adversarial and independent of the stochastic delay, then the capacity of the associated physical channel is infinite

    On the Sensitivity of Continuous-Time Noncoherent Fading Channel Capacity

    Get PDF
    The noncoherent capacity of stationary discrete-time fading channels is known to be very sensitive to the fine details of the channel model. More specifically, the measure of the support of the fading-process power spectral density (PSD) determines if noncoherent capacity grows logarithmically in SNR or slower than logarithmically. Such a result is unsatisfactory from an engineering point of view, as the support of the PSD cannot be determined through measurements. The aim of this paper is to assess whether, for general continuous-time Rayleigh-fading channels, this sensitivity has a noticeable impact on capacity at SNR values of practical interest. To this end, we consider the general class of band-limited continuous-time Rayleigh-fading channels that satisfy the wide-sense stationary uncorrelated-scattering (WSSUS) assumption and are, in addition, underspread. We show that, for all SNR values of practical interest, the noncoherent capacity of every channel in this class is close to the capacity of an AWGN channel with the same SNR and bandwidth, independently of the measure of the support of the scattering function (the two-dimensional channel PSD). Our result is based on a lower bound on noncoherent capacity, which is built on a discretization of the channel input-output relation induced by projecting onto Weyl-Heisenberg (WH) sets. This approach is interesting in its own right as it yields a mathematically tractable way of dealing with the mutual information between certain continuous-time random signals.Comment: final versio
    • …
    corecore