76,740 research outputs found

    Deep learning approach to Fourier ptychographic microscopy

    Full text link
    Convolutional neural networks (CNNs) have gained tremendous success in solving complex inverse problems. The aim of this work is to develop a novel CNN framework to reconstruct video sequences of dynamic live cells captured using a computational microscopy technique, Fourier ptychographic microscopy (FPM). The unique feature of the FPM is its capability to reconstruct images with both wide field-of-view (FOV) and high resolution, i.e. a large space-bandwidth-product (SBP), by taking a series of low resolution intensity images. For live cell imaging, a single FPM frame contains thousands of cell samples with different morphological features. Our idea is to fully exploit the statistical information provided by these large spatial ensembles so as to make predictions in a sequential measurement, without using any additional temporal dataset. Specifically, we show that it is possible to reconstruct high-SBP dynamic cell videos by a CNN trained only on the first FPM dataset captured at the beginning of a time-series experiment. Our CNN approach reconstructs a 12800×10800 pixel phase image using only ∼25 seconds, a 50× speedup compared to the model-based FPM algorithm. In addition, the CNN further reduces the required number of images in each time frame by ∼ 6×. Overall, this significantly improves the imaging throughput by reducing both the acquisition and computational times. The proposed CNN is based on the conditional generative adversarial network (cGAN) framework. We further propose a mixed loss function that combines the standard image domain loss and a weighted Fourier domain loss, which leads to improved reconstruction of the high frequency information. Additionally, we also exploit transfer learning so that our pre-trained CNN can be further optimized to image other cell types. Our technique demonstrates a promising deep learning approach to continuously monitor large live-cell populations over an extended time and gather useful spatial and temporal information with sub-cellular resolution.We would like to thank NVIDIA Corporation for supporting us with the GeForce Titan Xp through the GPU Grant Program. (NVIDIA Corporation; GeForce Titan Xp through the GPU Grant Program)First author draf

    A Transfer-Learning Approach for Accelerated MRI using Deep Neural Networks

    Full text link
    Purpose: Neural networks have received recent interest for reconstruction of undersampled MR acquisitions. Ideally network performance should be optimized by drawing the training and testing data from the same domain. In practice, however, large datasets comprising hundreds of subjects scanned under a common protocol are rare. The goal of this study is to introduce a transfer-learning approach to address the problem of data scarcity in training deep networks for accelerated MRI. Methods: Neural networks were trained on thousands of samples from public datasets of either natural images or brain MR images. The networks were then fine-tuned using only few tens of brain MR images in a distinct testing domain. Domain-transferred networks were compared to networks trained directly in the testing domain. Network performance was evaluated for varying acceleration factors (2-10), number of training samples (0.5-4k) and number of fine-tuning samples (0-100). Results: The proposed approach achieves successful domain transfer between MR images acquired with different contrasts (T1- and T2-weighted images), and between natural and MR images (ImageNet and T1- or T2-weighted images). Networks obtained via transfer-learning using only tens of images in the testing domain achieve nearly identical performance to networks trained directly in the testing domain using thousands of images. Conclusion: The proposed approach might facilitate the use of neural networks for MRI reconstruction without the need for collection of extensive imaging datasets

    Using Machine-Learning to Optimize phase contrast in a Low-Cost Cellphone Microscope

    Get PDF
    Cellphones equipped with high-quality cameras and powerful CPUs as well as GPUs are widespread. This opens new prospects to use such existing computational and imaging resources to perform medical diagnosis in developing countries at a very low cost. Many relevant samples, like biological cells or waterborn parasites, are almost fully transparent. As they do not exhibit absorption, but alter the light's phase only, they are almost invisible in brightfield microscopy. Expensive equipment and procedures for microscopic contrasting or sample staining often are not available. By applying machine-learning techniques, such as a convolutional neural network (CNN), it is possible to learn a relationship between samples to be examined and its optimal light source shapes, in order to increase e.g. phase contrast, from a given dataset to enable real-time applications. For the experimental setup, we developed a 3D-printed smartphone microscope for less than 100 \$ using off-the-shelf components only such as a low-cost video projector. The fully automated system assures true Koehler illumination with an LCD as the condenser aperture and a reversed smartphone lens as the microscope objective. We show that the effect of a varied light source shape, using the pre-trained CNN, does not only improve the phase contrast, but also the impression of an improvement in optical resolution without adding any special optics, as demonstrated by measurements

    Learning Wavefront Coding for Extended Depth of Field Imaging

    Get PDF
    Depth of field is an important factor of imaging systems that highly affects the quality of the acquired spatial information. Extended depth of field (EDoF) imaging is a challenging ill-posed problem and has been extensively addressed in the literature. We propose a computational imaging approach for EDoF, where we employ wavefront coding via a diffractive optical element (DOE) and we achieve deblurring through a convolutional neural network. Thanks to the end-to-end differentiable modeling of optical image formation and computational post-processing, we jointly optimize the optical design, i.e., DOE, and the deblurring through standard gradient descent methods. Based on the properties of the underlying refractive lens and the desired EDoF range, we provide an analytical expression for the search space of the DOE, which is instrumental in the convergence of the end-to-end network. We achieve superior EDoF imaging performance compared to the state of the art, where we demonstrate results with minimal artifacts in various scenarios, including deep 3D scenes and broadband imaging

    Optimized Quantification of Spin Relaxation Times in the Hybrid State

    Full text link
    Purpose: The analysis of optimized spin ensemble trajectories for relaxometry in the hybrid state. Methods: First, we constructed visual representations to elucidate the differential equation that governs spin dynamics in hybrid state. Subsequently, numerical optimizations were performed to find spin ensemble trajectories that minimize the Cram\'er-Rao bound for T1T_1-encoding, T2T_2-encoding, and their weighted sum, respectively, followed by a comparison of the Cram\'er-Rao bounds obtained with our optimized spin-trajectories, as well as Look-Locker and multi-spin-echo methods. Finally, we experimentally tested our optimized spin trajectories with in vivo scans of the human brain. Results: After a nonrecurring inversion segment on the southern hemisphere of the Bloch sphere, all optimized spin trajectories pursue repetitive loops on the northern half of the sphere in which the beginning of the first and the end of the last loop deviate from the others. The numerical results obtained in this work align well with intuitive insights gleaned directly from the governing equation. Our results suggest that hybrid-state sequences outperform traditional methods. Moreover, hybrid-state sequences that balance T1T_1- and T2T_2-encoding still result in near optimal signal-to-noise efficiency. Thus, the second parameter can be encoded at virtually no extra cost. Conclusion: We provide insights regarding the optimal encoding processes of spin relaxation times in order to guide the design of robust and efficient pulse sequences. We find that joint acquisitions of T1T_1 and T2T_2 in the hybrid state are substantially more efficient than sequential encoding techniques.Comment: 10 pages, 5 figure

    Deep learning approach to Fourier ptychographic microscopy

    Full text link
    Convolutional neural networks (CNNs) have gained tremendous success in solving complex inverse problems. The aim of this work is to develop a novel CNN framework to reconstruct video sequence of dynamic live cells captured using a computational microscopy technique, Fourier ptychographic microscopy (FPM). The unique feature of the FPM is its capability to reconstruct images with both wide field-of-view (FOV) and high resolution, i.e. a large space-bandwidth-product (SBP), by taking a series of low resolution intensity images. For live cell imaging, a single FPM frame contains thousands of cell samples with different morphological features. Our idea is to fully exploit the statistical information provided by this large spatial ensemble so as to make predictions in a sequential measurement, without using any additional temporal dataset. Specifically, we show that it is possible to reconstruct high-SBP dynamic cell videos by a CNN trained only on the first FPM dataset captured at the beginning of a time-series experiment. Our CNN approach reconstructs a 12800X10800 pixels phase image using only ~25 seconds, a 50X speedup compared to the model-based FPM algorithm. In addition, the CNN further reduces the required number of images in each time frame by ~6X. Overall, this significantly improves the imaging throughput by reducing both the acquisition and computational times. The proposed CNN is based on the conditional generative adversarial network (cGAN) framework. Additionally, we also exploit transfer learning so that our pre-trained CNN can be further optimized to image other cell types. Our technique demonstrates a promising deep learning approach to continuously monitor large live-cell populations over an extended time and gather useful spatial and temporal information with sub-cellular resolution

    Fat fraction mapping using bSSFP Signal Profile Asymmetries for Robust multi-Compartment Quantification (SPARCQ)

    Get PDF
    Purpose: To develop a novel quantitative method for detection of different tissue compartments based on bSSFP signal profile asymmetries (SPARCQ) and to provide a validation and proof-of-concept for voxel-wise water-fat separation and fat fraction mapping. Methods: The SPARCQ framework uses phase-cycled bSSFP acquisitions to obtain bSSFP signal profiles. For each voxel, the profile is decomposed into a weighted sum of simulated profiles with specific off-resonance and relaxation time ratios. From the obtained set of weights, voxel-wise estimations of the fractions of the different components and their equilibrium magnetization are extracted. For the entire image volume, component-specific quantitative maps as well as banding-artifact-free images are generated. A SPARCQ proof-of-concept was provided for water-fat separation and fat fraction mapping. Noise robustness was assessed using simulations. A dedicated water-fat phantom was used to validate fat fractions estimated with SPARCQ against gold-standard 1H MRS. Quantitative maps were obtained in knees of six healthy volunteers, and SPARCQ repeatability was evaluated in scan rescan experiments. Results: Simulations showed that fat fraction estimations are accurate and robust for signal-to-noise ratios above 20. Phantom experiments showed good agreement between SPARCQ and gold-standard (GS) fat fractions (fF(SPARCQ) = 1.02*fF(GS) + 0.00235). In volunteers, quantitative maps and banding-artifact-free water-fat-separated images obtained with SPARCQ demonstrated the expected contrast between fatty and non-fatty tissues. The coefficient of repeatability of SPARCQ fat fraction was 0.0512. Conclusion: The SPARCQ framework was proposed as a novel quantitative mapping technique for detecting different tissue compartments, and its potential was demonstrated for quantitative water-fat separation.Comment: 20 pages, 7 figures, submitted to Magnetic Resonance in Medicin
    corecore