6 research outputs found

    Information Theory and the Length Distribution of all Discrete Systems

    Full text link
    We begin with the extraordinary observation that the length distribution of 80 million proteins in UniProt, the Universal Protein Resource, measured in amino acids, is qualitatively identical to the length distribution of large collections of computer functions measured in programming language tokens, at all scales. That two such disparate discrete systems share important structural properties suggests that yet other apparently unrelated discrete systems might share the same properties, and certainly invites an explanation. We demonstrate that this is inevitable for all discrete systems of components built from tokens or symbols. Departing from existing work by embedding the Conservation of Hartley-Shannon information (CoHSI) in a classical statistical mechanics framework, we identify two kinds of discrete system, heterogeneous and homogeneous. Heterogeneous systems contain components built from a unique alphabet of tokens and yield an implicit CoHSI distribution with a sharp unimodal peak asymptoting to a power-law. Homogeneous systems contain components each built from just one kind of token unique to that component and yield a CoHSI distribution corresponding to Zipf's law. This theory is applied to heterogeneous systems, (proteome, computer software, music); homogeneous systems (language texts, abundance of the elements); and to systems in which both heterogeneous and homogeneous behaviour co-exist (word frequencies and word length frequencies in language texts). In each case, the predictions of the theory are tested and supported to high levels of statistical significance. We also show that in the same heterogeneous system, different but consistent alphabets must be related by a power-law. We demonstrate this on a large body of music by excluding and including note duration in the definition of the unique alphabet of notes.Comment: 70 pages, 53 figures, inc. 30 pages of Appendice

    CoHSI I; Detailed properties of the Canonical Distribution for Discrete Systems such as the Proteome

    Full text link
    The CoHSI (Conservation of Hartley-Shannon Information) distribution is at the heart of a wide-class of discrete systems, defining the length distribution of their components amongst other global properties. Discrete systems such as the known proteome where components are proteins, computer software, where components are functions and texts where components are books, are all known to fit this distribution accurately. In this short paper, we explore its solution and its resulting properties and lay the foundation for a series of papers which will demonstrate amongst other things, why the average length of components is so highly conserved and why long components occur so frequently in these systems. These properties are not amenable to local arguments such as natural selection in the case of the proteome or human volition in the case of computer software, and indeed turn out to be inevitable global properties of discrete systems devolving directly from CoHSI and shared by all. We will illustrate this using examples from the Uniprot protein database as a prelude to subsequent studies.Comment: 13 pages, 11 figure

    CoHSI IV: Unifying Horizontal and Vertical Gene Transfer - is Mechanism Irrelevant ?

    Full text link
    In previous papers we have described with strong experimental support, the organising role that CoHSI (Conservation of Hartley-Shannon Information) plays in determining important global properties of all known proteins, from defining the length distribution, to the natural emergence of very long proteins and their relationship to evolutionary time. Here we consider the insight that CoHSI might bring to a different problem, the distribution of identical proteins across species. Horizontal and Vertical Gene Transfer (HGT/VGT) both lead to the replication of protein sequences across species through a diversity of mechanisms some of which remain unknown. In contrast, CoHSI predicts from fundamental theory that such systems will demonstrate power law behavior independently of any mechanisms, and using the Uniprot database we show that the global pattern of protein re-use is emphatically linear on a log-log plot (adj. R2=0.99,p<2.2Γ—10βˆ’16R^{2} = 0.99, p < 2.2 \times 10^{-16} over 4 decades); i.e. it is extremely close to the predicted power law. Specifically we show that over 6.9 million proteins in TrEMBL 18-02 are re-used, i.e. their sequence appears identically in between 2 and 9,812 species, with re-used proteins varying in length from 7 to as long as 14,596 amino acids. Using (DL+V) to denote the three domains of life plus viruses, 21,676 proteins are shared between two (DL+V); 22 between three (DL+V) and 5 are shared in all four (DL+V). Although the majority of protein re-use occurs between bacterial species those proteins most frequently re-used occur disproportionately in viruses, which play a fundamental role in this distribution. These results suggest that diverse mechanisms of gene transfer (including traditional inheritance) are irrelevant in determining the global distribution of protein re-use.Comment: 16 pages, 8 figures, 8 tables, 37 reference

    CoHSI V: Identical multiple scale-independent systems within genomes and computer software

    Full text link
    A mechanism-free and symbol-agnostic conservation principle, the Conservation of Hartley-Shannon Information (CoHSI) is predicted to constrain the structure of discrete systems regardless of their origin or function. Despite their distinct provenance, genomes and computer software share a simple structural property; they are linear symbol-based discrete systems, and thus they present an opportunity to test in a comparative context the predictions of CoHSI. Here, without any consideration of, or relevance to, their role in specifying function, we identify that 10 representative genomes (from microbes to human) and a large collection of software contain identically structured nested subsystems. In the case of base sequences in genomes, CoHSI predicts that if we split the genome into n-tuples (a 2-tuple is a pair of consecutive bases; a 3-tuple is a trio and so on), without regard for whether or not a region is coding, then each collection of n-tuples will constitute a homogeneous discrete system and will obey a power-law in frequency of occurrence of the n-tuples. We consider 1-, 2-, 3-, 4-, 5-, 6-, 7- and 8-tuples of ten species and demonstrate that the predicted power-law behavior is emphatically present, and furthermore as predicted, is insensitive to the start window for the tuple extraction i.e. the reading frame is irrelevant. We go on to provide a proof of Chargaff's second parity rule and on the basis of this proof, predict higher order tuple parity rules which we then identify in the genome data. CoHSI predicts precisely the same behavior in computer software. This prediction was tested and confirmed using 2-, 3- and 4-tuples of the hexadecimal representation of machine code in multiple computer programs, underlining the fundamental role played by CoHSI in defining the landscape in which discrete symbol-based systems must operate.Comment: 22 pages, 13 figures, 35 reference

    CoHSI III: Long proteins and implications for protein evolution

    Full text link
    The length distribution of proteins measured in amino acids follows the CoHSI (Conservation of Hartley-Shannon Information) probability distribution. In previous papers we have verified various predictions of this using the Uniprot database but here we explore a novel predicted relationship between the longest proteins and evolutionary time. We demonstrate from both theory and experiment that the longest protein and the total number of proteins are intimately related by Information Theory and we give a simple formula for this. We stress that no evolutionary explanation is necessary; it is an intrinsic property of a CoHSI system. While the CoHSI distribution favors the appearance of proteins with fewer than 750 amino acids (characteristic of most functional proteins or their constituent domains) its intrinsic asymptotic power-law also favors the appearance of unusually long proteins; we predict that there are as yet undiscovered proteins longer than 45,000 amino acids. In so doing, we draw an analogy between the process of protein folding driven by favorable pathways (or funnels) through the energy landscape of protein conformations, and the preferential information pathways through which CoHSI exerts its constraints in discrete systems. Finally, we show that CoHSI predicts the recent appearance in evolutionary time of the longest proteins, specifically in eukaryotes because of their richer unique alphabet of amino acids, and by merging with independent phylogenetic data, we confirm a predicted consistent relationship between the longest proteins and documented and potential undocumented mass extinctions.Comment: 20 pages, 12 figures, 3 tables, 37 reference

    CoHSI II; The average length of proteins, evolutionary pressure and eukaryotic fine structure

    Full text link
    The CoHSI (Conservation of Hartley-Shannon Information) distribution is at the heart of a wide-class of discrete systems, defining (amongst other properties) the length distribution of their components. Discrete systems such as the known proteome, computer software and texts are all known to fit this distribution accurately. In a previous paper, we explored the properties of this distribution in detail. Here we will use these properties to show why the average length of components in general and proteins in particular is highly conserved, howsoever measured, demonstrating this on various aggregations of proteins taken from the UniProt database. We will go on to define departures from this equilibrium state, identifying fine structure in the average length of eukaryotic proteins that result from evolutionary processes.Comment: 14 pages, 14 figure
    corecore