4 research outputs found

    Information Theoretic Authentication and Secrecy Codes in the Splitting Model

    Full text link
    In the splitting model, information theoretic authentication codes allow non-deterministic encoding, that is, several messages can be used to communicate a particular plaintext. Certain applications require that the aspect of secrecy should hold simultaneously. Ogata-Kurosawa-Stinson-Saido (2004) have constructed optimal splitting authentication codes achieving perfect secrecy for the special case when the number of keys equals the number of messages. In this paper, we establish a construction method for optimal splitting authentication codes with perfect secrecy in the more general case when the number of keys may differ from the number of messages. To the best knowledge, this is the first result of this type.Comment: 4 pages (double-column); to appear in Proc. 2012 International Zurich Seminar on Communications (IZS 2012, Zurich

    Disjoint difference families and their applications

    Get PDF
    Difference sets and their generalisations to difference families arise from the study of designs and many other applications. Here we give a brief survey of some of these applications, noting in particular the diverse definitions of difference families and the variations in priorities in constructions. We propose a definition of disjoint difference families that encompasses these variations and allows a comparison of the similarities and disparities. We then focus on two constructions of disjoint difference families arising from frequency hopping sequences and showed that they are in fact the same. We conclude with a discussion of the notion of equivalence for frequency hopping sequences and for disjoint difference families

    Splitting authentication codes with perfect secrecy: new results, constructions and connections with algebraic manipulation detection codes

    Get PDF
    A splitting BIBD is a type of combinatorial design that can be used to construct splitting authentication codes with good properties. In this paper we show that a design-theoretic approach is useful in the analysis of more general splitting authentication codes. Motivated by the study of algebraic manipulation detection (AMD) codes, we define the concept of a group generated splitting authentication code. We show that all group-generated authentication codes have perfect secrecy, which allows us to demonstrate that algebraic manipulation detection codes can be considered to be a special case of an authentication code with perfect secrecy. We also investigate splitting BIBDs that can be equitably ordered . These splitting BIBDs yield authentication codes with splitting that also have perfect secrecy. We show that, while group generated BIBDs are inherently equitably ordered, the concept is applicable to more general splitting BIBDs. For various pairs (k,c)(k,c), we determine necessary and sufficient (or almost sufficient) conditions for the existence of (v,k×c,1)(v, k \times c,1)-splitting BIBDs that can be equitably ordered. The pairs for which we can solve this problem are (k,c)=(3,2),(4,2),(3,3)(k,c) = (3,2), (4,2), (3,3) and (3,4)(3,4), as well as all cases with k=2k = 2
    corecore