493,767 research outputs found

    Quantum data processing and error correction

    Get PDF
    This paper investigates properties of noisy quantum information channels. We define a new quantity called {\em coherent information} which measures the amount of quantum information conveyed in the noisy channel. This quantity can never be increased by quantum information processing, and it yields a simple necessary and sufficient condition for the existence of perfect quantum error correction.Comment: LaTeX, 20 page

    Quantum fluctuation theorems for arbitrary environments: adiabatic and non-adiabatic entropy production

    Get PDF
    We analyze the production of entropy along non-equilibrium processes in quantum systems coupled to generic environments. First, we show that the entropy production due to final measurements and the loss of correlations obeys a fluctuation theorem in detailed and integral forms. Second, we discuss the decomposition of the entropy production into two positive contributions, adiabatic and non-adiabatic, based on the existence of invariant states of the local dynamics. Fluctuation theorems for both contributions hold only for evolutions verifying a specific condition of quantum origin. We illustrate our results with three relevant examples of quantum thermodynamic processes far from equilibrium.Comment: 20 pages + 6 of appendices; 7 figures; v2: New example added (example A) and some minor corrections; accepted in Phys. Rev.

    When is Quantum Decoherence Dynamics Classical?

    Get PDF
    A direct classical analog of quantum decoherence is introduced. Similarities and differences between decoherence dynamics examined quantum mechanically and classically are exposed via a second-order perturbative treatment and via a strong decoherence theory, showing a strong dependence on the nature of the system-environment coupling. For example, for the traditionally assumed linear coupling, the classical and quantum results are shown to be in exact agreement.Comment: 5 pages, no figures, to appear in Physical Review Letter

    Energy representation for out-of-equilibrium Brownian-like systems: steady states and fluctuation relations

    Full text link
    Stochastic dynamics in the energy representation is employed as a method to study non-equilibrium Brownian-like systems. It is shown that the equation of motion for the energy of such systems can be taken in the form of the Langevin equation with multiplicative noise. Properties of the steady states are examined by solving the Fokker-Planck equation for the energy distribution functions. The generalized integral fluctuation theorem is deduced for the systems characterized by the shifted probability flux operator. There are a number of entropy and fluctuation relations such as the Hatano-Sasa identity and the Jarzynski's equality that follow from this theorem.Comment: revtex4-1, 18 pages, extended discussion, references adde

    Linear Quantum Entropy and Non-Hermitian Hamiltonians

    Full text link
    We consider the description of open quantum systems with probability sinks (or sources) in terms of general non-Hermitian Hamiltonians.~Within such a framework, we study novel possible definitions of the quantum linear entropy as an indicator of the flow of information during the dynamics. Such linear entropy functionals are necessary in the case of a partially Wigner-transformed non-Hermitian Hamiltonian (which is typically useful within a mixed quantum-classical representation). Both the case of a system represented by a pure non-Hermitian Hamiltonian as well as that of the case of non-Hermitian dynamics in a classical bath are explicitly considered.Comment: Entropy, Special Issue "Entropy in Quantum Systems and Quantum Field Theory (QFT)
    • …
    corecore