6,576 research outputs found

    Policy-Aware Unbiased Learning to Rank for Top-k Rankings

    Get PDF
    Counterfactual Learning to Rank (LTR) methods optimize ranking systems using logged user interactions that contain interaction biases. Existing methods are only unbiased if users are presented with all relevant items in every ranking. There is currently no existing counterfactual unbiased LTR method for top-k rankings. We introduce a novel policy-aware counterfactual estimator for LTR metrics that can account for the effect of a stochastic logging policy. We prove that the policy-aware estimator is unbiased if every relevant item has a non-zero probability to appear in the top-k ranking. Our experimental results show that the performance of our estimator is not affected by the size of k: for any k, the policy-aware estimator reaches the same retrieval performance while learning from top-k feedback as when learning from feedback on the full ranking. Lastly, we introduce novel extensions of traditional LTR methods to perform counterfactual LTR and to optimize top-k metrics. Together, our contributions introduce the first policy-aware unbiased LTR approach that learns from top-k feedback and optimizes top-k metrics. As a result, counterfactual LTR is now applicable to the very prevalent top-k ranking setting in search and recommendation.Comment: SIGIR 2020 full conference pape

    Counterfactual Estimation and Optimization of Click Metrics for Search Engines

    Full text link
    Optimizing an interactive system against a predefined online metric is particularly challenging, when the metric is computed from user feedback such as clicks and payments. The key challenge is the counterfactual nature: in the case of Web search, any change to a component of the search engine may result in a different search result page for the same query, but we normally cannot infer reliably from search log how users would react to the new result page. Consequently, it appears impossible to accurately estimate online metrics that depend on user feedback, unless the new engine is run to serve users and compared with a baseline in an A/B test. This approach, while valid and successful, is unfortunately expensive and time-consuming. In this paper, we propose to address this problem using causal inference techniques, under the contextual-bandit framework. This approach effectively allows one to run (potentially infinitely) many A/B tests offline from search log, making it possible to estimate and optimize online metrics quickly and inexpensively. Focusing on an important component in a commercial search engine, we show how these ideas can be instantiated and applied, and obtain very promising results that suggest the wide applicability of these techniques

    Estimating Position Bias without Intrusive Interventions

    Full text link
    Presentation bias is one of the key challenges when learning from implicit feedback in search engines, as it confounds the relevance signal. While it was recently shown how counterfactual learning-to-rank (LTR) approaches \cite{Joachims/etal/17a} can provably overcome presentation bias when observation propensities are known, it remains to show how to effectively estimate these propensities. In this paper, we propose the first method for producing consistent propensity estimates without manual relevance judgments, disruptive interventions, or restrictive relevance modeling assumptions. First, we show how to harvest a specific type of intervention data from historic feedback logs of multiple different ranking functions, and show that this data is sufficient for consistent propensity estimation in the position-based model. Second, we propose a new extremum estimator that makes effective use of this data. In an empirical evaluation, we find that the new estimator provides superior propensity estimates in two real-world systems -- Arxiv Full-text Search and Google Drive Search. Beyond these two points, we find that the method is robust to a wide range of settings in simulation studies

    Cascade Model-based Propensity Estimation for Counterfactual Learning to Rank

    Get PDF
    Unbiased CLTR requires click propensities to compensate for the difference between user clicks and true relevance of search results via IPS. Current propensity estimation methods assume that user click behavior follows the PBM and estimate click propensities based on this assumption. However, in reality, user clicks often follow the CM, where users scan search results from top to bottom and where each next click depends on the previous one. In this cascade scenario, PBM-based estimates of propensities are not accurate, which, in turn, hurts CLTR performance. In this paper, we propose a propensity estimation method for the cascade scenario, called CM-IPS. We show that CM-IPS keeps CLTR performance close to the full-information performance in case the user clicks follow the CM, while PBM-based CLTR has a significant gap towards the full-information. The opposite is true if the user clicks follow PBM instead of the CM. Finally, we suggest a way to select between CM- and PBM-based propensity estimation methods based on historical user clicks.Comment: 4 pages, 2 figures, 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '20

    Effective Evaluation using Logged Bandit Feedback from Multiple Loggers

    Full text link
    Accurately evaluating new policies (e.g. ad-placement models, ranking functions, recommendation functions) is one of the key prerequisites for improving interactive systems. While the conventional approach to evaluation relies on online A/B tests, recent work has shown that counterfactual estimators can provide an inexpensive and fast alternative, since they can be applied offline using log data that was collected from a different policy fielded in the past. In this paper, we address the question of how to estimate the performance of a new target policy when we have log data from multiple historic policies. This question is of great relevance in practice, since policies get updated frequently in most online systems. We show that naively combining data from multiple logging policies can be highly suboptimal. In particular, we find that the standard Inverse Propensity Score (IPS) estimator suffers especially when logging and target policies diverge -- to a point where throwing away data improves the variance of the estimator. We therefore propose two alternative estimators which we characterize theoretically and compare experimentally. We find that the new estimators can provide substantially improved estimation accuracy.Comment: KDD 201

    Unbiased Learning to Rank with Unbiased Propensity Estimation

    Full text link
    Learning to rank with biased click data is a well-known challenge. A variety of methods has been explored to debias click data for learning to rank such as click models, result interleaving and, more recently, the unbiased learning-to-rank framework based on inverse propensity weighting. Despite their differences, most existing studies separate the estimation of click bias (namely the \textit{propensity model}) from the learning of ranking algorithms. To estimate click propensities, they either conduct online result randomization, which can negatively affect the user experience, or offline parameter estimation, which has special requirements for click data and is optimized for objectives (e.g. click likelihood) that are not directly related to the ranking performance of the system. In this work, we address those problems by unifying the learning of propensity models and ranking models. We find that the problem of estimating a propensity model from click data is a dual problem of unbiased learning to rank. Based on this observation, we propose a Dual Learning Algorithm (DLA) that jointly learns an unbiased ranker and an \textit{unbiased propensity model}. DLA is an automatic unbiased learning-to-rank framework as it directly learns unbiased ranking models from biased click data without any preprocessing. It can adapt to the change of bias distributions and is applicable to online learning. Our empirical experiments with synthetic and real-world data show that the models trained with DLA significantly outperformed the unbiased learning-to-rank algorithms based on result randomization and the models trained with relevance signals extracted by click models
    • …
    corecore