33 research outputs found

    Self-Supervised MRI Reconstruction with Unrolled Diffusion Models

    Full text link
    Magnetic Resonance Imaging (MRI) produces excellent soft tissue contrast, albeit it is an inherently slow imaging modality. Promising deep learning methods have recently been proposed to reconstruct accelerated MRI scans. However, existing methods still suffer from various limitations regarding image fidelity, contextual sensitivity, and reliance on fully-sampled acquisitions for model training. To comprehensively address these limitations, we propose a novel self-supervised deep reconstruction model, named Self-Supervised Diffusion Reconstruction (SSDiffRecon). SSDiffRecon expresses a conditional diffusion process as an unrolled architecture that interleaves cross-attention transformers for reverse diffusion steps with data-consistency blocks for physics-driven processing. Unlike recent diffusion methods for MRI reconstruction, a self-supervision strategy is adopted to train SSDiffRecon using only undersampled k-space data. Comprehensive experiments on public brain MR datasets demonstrates the superiority of SSDiffRecon against state-of-the-art supervised, and self-supervised baselines in terms of reconstruction speed and quality. Implementation will be available at https://github.com/yilmazkorkmaz1/SSDiffRecon

    Interpretable Medical Image Classification using Prototype Learning and Privileged Information

    Full text link
    Interpretability is often an essential requirement in medical imaging. Advanced deep learning methods are required to address this need for explainability and high performance. In this work, we investigate whether additional information available during the training process can be used to create an understandable and powerful model. We propose an innovative solution called Proto-Caps that leverages the benefits of capsule networks, prototype learning and the use of privileged information. Evaluating the proposed solution on the LIDC-IDRI dataset shows that it combines increased interpretability with above state-of-the-art prediction performance. Compared to the explainable baseline model, our method achieves more than 6 % higher accuracy in predicting both malignancy (93.0 %) and mean characteristic features of lung nodules. Simultaneously, the model provides case-based reasoning with prototype representations that allow visual validation of radiologist-defined attributes.Comment: MICCAI 2023 Medical Image Computing and Computer Assisted Interventio

    FedAutoMRI: Federated Neural Architecture Search for MR Image Reconstruction

    Full text link
    Centralized training methods have shown promising results in MR image reconstruction, but privacy concerns arise when gathering data from multiple institutions. Federated learning, a distributed collaborative training scheme, can utilize multi-center data without the need to transfer data between institutions. However, existing federated learning MR image reconstruction methods rely on manually designed models which have extensive parameters and suffer from performance degradation when facing heterogeneous data distributions. To this end, this paper proposes a novel FederAted neUral archiTecture search approach fOr MR Image reconstruction (FedAutoMRI). The proposed method utilizes differentiable architecture search to automatically find the optimal network architecture. In addition, an exponential moving average method is introduced to improve the robustness of the client model to address the data heterogeneity issue. To the best of our knowledge, this is the first work to use federated neural architecture search for MR image reconstruction. Experimental results demonstrate that our proposed FedAutoMRI can achieve promising performances while utilizing a lightweight model with only a small number of model parameters compared to the classical federated learning methods.Comment: 10 page

    Context-Aware Pseudo-Label Refinement for Source-Free Domain Adaptive Fundus Image Segmentation

    Full text link
    In the domain adaptation problem, source data may be unavailable to the target client side due to privacy or intellectual property issues. Source-free unsupervised domain adaptation (SF-UDA) aims at adapting a model trained on the source side to align the target distribution with only the source model and unlabeled target data. The source model usually produces noisy and context-inconsistent pseudo-labels on the target domain, i.e., neighbouring regions that have a similar visual appearance are annotated with different pseudo-labels. This observation motivates us to refine pseudo-labels with context relations. Another observation is that features of the same class tend to form a cluster despite the domain gap, which implies context relations can be readily calculated from feature distances. To this end, we propose a context-aware pseudo-label refinement method for SF-UDA. Specifically, a context-similarity learning module is developed to learn context relations. Next, pseudo-label revision is designed utilizing the learned context relations. Further, we propose calibrating the revised pseudo-labels to compensate for wrong revision caused by inaccurate context relations. Additionally, we adopt a pixel-level and class-level denoising scheme to select reliable pseudo-labels for domain adaptation. Experiments on cross-domain fundus images indicate that our approach yields the state-of-the-art results. Code is available at https://github.com/xmed-lab/CPR.Comment: Accepted by MICCAI 2023, 11 page

    The Significance of Machine Learning in Clinical Disease Diagnosis: A Review

    Full text link
    The global need for effective disease diagnosis remains substantial, given the complexities of various disease mechanisms and diverse patient symptoms. To tackle these challenges, researchers, physicians, and patients are turning to machine learning (ML), an artificial intelligence (AI) discipline, to develop solutions. By leveraging sophisticated ML and AI methods, healthcare stakeholders gain enhanced diagnostic and treatment capabilities. However, there is a scarcity of research focused on ML algorithms for enhancing the accuracy and computational efficiency. This research investigates the capacity of machine learning algorithms to improve the transmission of heart rate data in time series healthcare metrics, concentrating particularly on optimizing accuracy and efficiency. By exploring various ML algorithms used in healthcare applications, the review presents the latest trends and approaches in ML-based disease diagnosis (MLBDD). The factors under consideration include the algorithm utilized, the types of diseases targeted, the data types employed, the applications, and the evaluation metrics. This review aims to shed light on the prospects of ML in healthcare, particularly in disease diagnosis. By analyzing the current literature, the study provides insights into state-of-the-art methodologies and their performance metrics.Comment: 8 page

    Diffusion-Model-Assisted Supervised Learning of Generative Models for Density Estimation

    Full text link
    We present a supervised learning framework of training generative models for density estimation. Generative models, including generative adversarial networks, normalizing flows, variational auto-encoders, are usually considered as unsupervised learning models, because labeled data are usually unavailable for training. Despite the success of the generative models, there are several issues with the unsupervised training, e.g., requirement of reversible architectures, vanishing gradients, and training instability. To enable supervised learning in generative models, we utilize the score-based diffusion model to generate labeled data. Unlike existing diffusion models that train neural networks to learn the score function, we develop a training-free score estimation method. This approach uses mini-batch-based Monte Carlo estimators to directly approximate the score function at any spatial-temporal location in solving an ordinary differential equation (ODE), corresponding to the reverse-time stochastic differential equation (SDE). This approach can offer both high accuracy and substantial time savings in neural network training. Once the labeled data are generated, we can train a simple fully connected neural network to learn the generative model in the supervised manner. Compared with existing normalizing flow models, our method does not require to use reversible neural networks and avoids the computation of the Jacobian matrix. Compared with existing diffusion models, our method does not need to solve the reverse-time SDE to generate new samples. As a result, the sampling efficiency is significantly improved. We demonstrate the performance of our method by applying it to a set of 2D datasets as well as real data from the UCI repository

    AnoDODE: Anomaly Detection with Diffusion ODE

    Full text link
    Anomaly detection is the process of identifying atypical data samples that significantly deviate from the majority of the dataset. In the realm of clinical screening and diagnosis, detecting abnormalities in medical images holds great importance. Typically, clinical practice provides access to a vast collection of normal images, while abnormal images are relatively scarce. We hypothesize that abnormal images and their associated features tend to manifest in low-density regions of the data distribution. Following this assumption, we turn to diffusion ODEs for unsupervised anomaly detection, given their tractability and superior performance in density estimation tasks. More precisely, we propose a new anomaly detection method based on diffusion ODEs by estimating the density of features extracted from multi-scale medical images. Our anomaly scoring mechanism depends on computing the negative log-likelihood of features extracted from medical images at different scales, quantified in bits per dimension. Furthermore, we propose a reconstruction-based anomaly localization suitable for our method. Our proposed method not only identifie anomalies but also provides interpretability at both the image and pixel levels. Through experiments on the BraTS2021 medical dataset, our proposed method outperforms existing methods. These results confirm the effectiveness and robustness of our method.Comment: 11 pages, 5 figure
    corecore