424,365 research outputs found

    Beyond Stemming and Lemmatization: Ultra-stemming to Improve Automatic Text Summarization

    Full text link
    In Automatic Text Summarization, preprocessing is an important phase to reduce the space of textual representation. Classically, stemming and lemmatization have been widely used for normalizing words. However, even using normalization on large texts, the curse of dimensionality can disturb the performance of summarizers. This paper describes a new method for normalization of words to further reduce the space of representation. We propose to reduce each word to its initial letters, as a form of Ultra-stemming. The results show that Ultra-stemming not only preserve the content of summaries produced by this representation, but often the performances of the systems can be dramatically improved. Summaries on trilingual corpora were evaluated automatically with Fresa. Results confirm an increase in the performance, regardless of summarizer system used.Comment: 22 pages, 12 figures, 9 table

    Spatial representations of numbers and letters in children

    Get PDF
    Different lines of evidence suggest that children's mental representations of numbers are spatially organized in form of a mental number line. It is, however, still unclear whether a spatial organization is specific for the numerical domain or also applies to other ordinal sequences in children. In the present study, children (n = 129) aged 8–9 years were asked to indicate the midpoint of lines flanked by task-irrelevant digits or letters. We found that the localization of the midpoint was systematically biased toward the larger digit. A similar, but less pronounced, effect was detected for letters with spatial biases toward the letter succeeding in the alphabet. Instead of assuming domain-specific forms of spatial representations, we suggest that ordinal information expressing relations between different items of a sequence might be spatially coded in children, whereby numbers seem to convey this kind of information in the most salient way

    The VWFA: It\u27s not just for words anymore

    Get PDF
    Reading is an important but phylogenetically new skill. While neuroimaging studies have identified brain regions used in reading, it is unclear to what extent these regions become specialized for use predominantly in reading vs. other tasks. Over the past several years, our group has published three studies addressing this question, particularly focusing on whether the putative visual word form area (VWFA) is used predominantly in reading, or whether it is used more generally in a number of tasks. Our three studies utilize a range of neuroimaging techniques, including task based fMRI experiments, a seed based resting state functional connectivity (RSFC) experiment, and a network based RSFC experiment. Overall, our studies indicate that the VWFA is not used specifically or even predominantly for reading. Rather the VWFA is a general use region that has processing properties making it particularly useful for reading, though it continues to be used in any task that requires its general processing properties. Our network based RSFC analysis extends this finding to other regions typically thought to be used predominantly for reading. Here, we review these findings and describe how the three studies complement each other. Then, we argue that conceptualizing the VWFA as a brain region with specific processing characteristics rather than a brain region devoted to a specific stimulus class, allows us to better explain the activity seen in this region during a variety of tasks. Having this type of conceptualization not only provides a better understanding of the VWFA but also provides a framework for understanding other brain regions, as it affords an explanation of function that is in keeping with the long history of studying the brain in terms of the type of information processing performed (Posner, 1978)

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    The left intraparietal sulcus modulates the selection of low salient stimuli

    Get PDF
    Neuropsychological and functional imaging studies have suggested a general right hemisphere advantage for processing global visual information and a left hemisphere advantage for processing local information. In contrast, a recent transcranial magnetic stimulation study [Mevorach, C., Humphreys, G. W., & Shalev, L. Opposite biases in salience-based selection for the left and right posterior parietal cortex. Nature Neuroscience, 9, 740-742, 2006b] demonstrated that functional lateralization of selection in the parietal cortices on the basis of the relative salience of stimuli might provide an alternative explanation for previous results. In the present study, we applied a whole-brain analysis of the functional magnetic resonance signal when participants responded to either the local or the global levels of hierarchical figures. The task (respond to local or global) was crossed with the saliency of the target level (local salient, global salient) to provide, for the first time, a direct contrast between brain activation related to the stimulus level and that related to relative saliency. We found evidence for lateralization of salience-based selection but not for selection based on the level of processing. Activation along the left intraparietal sulcus (IPS) was found when a low saliency stimulus had to be selected irrespective of its level. A control task showed that this was not simply an effect of task difficulty. The data suggest a specific role for regions along the left IPS in salience-based selection, supporting the argument that previous reports of lateralized responses to local and global stimuli were contaminated by effects of saliency

    Does Phenomenal Consciousness Overflow Attention? An Argument from Feature-Integration

    Get PDF
    In the past two decades a number of arguments have been given in favor of the possibility of phenomenal consciousness without attentional access, otherwise known as phenomenal overflow. This paper will show that the empirical data commonly cited in support of this thesis is, at best, ambiguous between two equally plausible interpretations, one of which does not posit phenomenology beyond attention. Next, after citing evidence for the feature-integration theory of attention, this paper will give an account of the relationship between consciousness and attention that accounts for both the empirical data and our phenomenological intuitions without positing phenomenal consciousness beyond attention. Having undercut the motivations for accepting phenomenal overflow along with having given reasons to think that phenomenal overflow does not occur, I end with the tentative conclusion that attention is a necessary condition for phenomenal consciousness

    What May Visualization Processes Optimize?

    Full text link
    In this paper, we present an abstract model of visualization and inference processes and describe an information-theoretic measure for optimizing such processes. In order to obtain such an abstraction, we first examined six classes of workflows in data analysis and visualization, and identified four levels of typical visualization components, namely disseminative, observational, analytical and model-developmental visualization. We noticed a common phenomenon at different levels of visualization, that is, the transformation of data spaces (referred to as alphabets) usually corresponds to the reduction of maximal entropy along a workflow. Based on this observation, we establish an information-theoretic measure of cost-benefit ratio that may be used as a cost function for optimizing a data visualization process. To demonstrate the validity of this measure, we examined a number of successful visualization processes in the literature, and showed that the information-theoretic measure can mathematically explain the advantages of such processes over possible alternatives.Comment: 10 page
    corecore