354,618 research outputs found

    Consecutive retrieval with redundancy: an optimal linear and an optimal cyclic arrangement and their storage space requirements

    Get PDF
    Information retrieval, file organization, consecutive retrieval property, consecutive retrieval with redundancy, storage space requirements 1

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    What May Visualization Processes Optimize?

    Full text link
    In this paper, we present an abstract model of visualization and inference processes and describe an information-theoretic measure for optimizing such processes. In order to obtain such an abstraction, we first examined six classes of workflows in data analysis and visualization, and identified four levels of typical visualization components, namely disseminative, observational, analytical and model-developmental visualization. We noticed a common phenomenon at different levels of visualization, that is, the transformation of data spaces (referred to as alphabets) usually corresponds to the reduction of maximal entropy along a workflow. Based on this observation, we establish an information-theoretic measure of cost-benefit ratio that may be used as a cost function for optimizing a data visualization process. To demonstrate the validity of this measure, we examined a number of successful visualization processes in the literature, and showed that the information-theoretic measure can mathematically explain the advantages of such processes over possible alternatives.Comment: 10 page

    Beyond Stemming and Lemmatization: Ultra-stemming to Improve Automatic Text Summarization

    Full text link
    In Automatic Text Summarization, preprocessing is an important phase to reduce the space of textual representation. Classically, stemming and lemmatization have been widely used for normalizing words. However, even using normalization on large texts, the curse of dimensionality can disturb the performance of summarizers. This paper describes a new method for normalization of words to further reduce the space of representation. We propose to reduce each word to its initial letters, as a form of Ultra-stemming. The results show that Ultra-stemming not only preserve the content of summaries produced by this representation, but often the performances of the systems can be dramatically improved. Summaries on trilingual corpora were evaluated automatically with Fresa. Results confirm an increase in the performance, regardless of summarizer system used.Comment: 22 pages, 12 figures, 9 table

    Computational Capacity and Energy Consumption of Complex Resistive Switch Networks

    Get PDF
    Resistive switches are a class of emerging nanoelectronics devices that exhibit a wide variety of switching characteristics closely resembling behaviors of biological synapses. Assembled into random networks, such resistive switches produce emerging behaviors far more complex than that of individual devices. This was previously demonstrated in simulations that exploit information processing within these random networks to solve tasks that require nonlinear computation as well as memory. Physical assemblies of such networks manifest complex spatial structures and basic processing capabilities often related to biologically-inspired computing. We model and simulate random resistive switch networks and analyze their computational capacities. We provide a detailed discussion of the relevant design parameters and establish the link to the physical assemblies by relating the modeling parameters to physical parameters. More globally connected networks and an increased network switching activity are means to increase the computational capacity linearly at the expense of exponentially growing energy consumption. We discuss a new modular approach that exhibits higher computational capacities and energy consumption growing linearly with the number of networks used. The results show how to optimize the trade-off between computational capacity and energy efficiency and are relevant for the design and fabrication of novel computing architectures that harness random assemblies of emerging nanodevices

    Spatial representations of numbers and letters in children

    Get PDF
    Different lines of evidence suggest that children's mental representations of numbers are spatially organized in form of a mental number line. It is, however, still unclear whether a spatial organization is specific for the numerical domain or also applies to other ordinal sequences in children. In the present study, children (n = 129) aged 8–9 years were asked to indicate the midpoint of lines flanked by task-irrelevant digits or letters. We found that the localization of the midpoint was systematically biased toward the larger digit. A similar, but less pronounced, effect was detected for letters with spatial biases toward the letter succeeding in the alphabet. Instead of assuming domain-specific forms of spatial representations, we suggest that ordinal information expressing relations between different items of a sequence might be spatially coded in children, whereby numbers seem to convey this kind of information in the most salient way
    corecore