26,778 research outputs found

    Statistical Pruning for Near-Maximum Likelihood Decoding

    Get PDF
    In many communications problems, maximum-likelihood (ML) decoding reduces to finding the closest (skewed) lattice point in N-dimensions to a given point xisin CN. In its full generality, this problem is known to be NP-complete. Recently, the expected complexity of the sphere decoder, a particular algorithm that solves the ML problem exactly, has been computed. An asymptotic analysis of this complexity has also been done where it is shown that the required computations grow exponentially in N for any fixed SNR. At the same time, numerical computations of the expected complexity show that there are certain ranges of rates, SNRs and dimensions N for which the expected computation (counted as the number of scalar multiplications) involves no more than N3 computations. However, when the dimension of the problem grows too large, the required computations become prohibitively large, as expected from the asymptotic exponential complexity. In this paper, we propose an algorithm that, for large N, offers substantial computational savings over the sphere decoder, while maintaining performance arbitrarily close to ML. We statistically prune the search space to a subset that, with high probability, contains the optimal solution, thereby reducing the complexity of the search. Bounds on the error performance of the new method are proposed. The complexity of the new algorithm is analyzed through an upper bound. The asymptotic behavior of the upper bound for large N is also analyzed which shows that the upper bound is also exponential but much lower than the sphere decoder. Simulation results show that the algorithm is much more efficient than the original sphere decoder for smaller dimensions as well, and does not sacrifice much in terms of performance

    Convex Optimization for Binary Classifier Aggregation in Multiclass Problems

    Full text link
    Multiclass problems are often decomposed into multiple binary problems that are solved by individual binary classifiers whose results are integrated into a final answer. Various methods, including all-pairs (APs), one-versus-all (OVA), and error correcting output code (ECOC), have been studied, to decompose multiclass problems into binary problems. However, little study has been made to optimally aggregate binary problems to determine a final answer to the multiclass problem. In this paper we present a convex optimization method for an optimal aggregation of binary classifiers to estimate class membership probabilities in multiclass problems. We model the class membership probability as a softmax function which takes a conic combination of discrepancies induced by individual binary classifiers, as an input. With this model, we formulate the regularized maximum likelihood estimation as a convex optimization problem, which is solved by the primal-dual interior point method. Connections of our method to large margin classifiers are presented, showing that the large margin formulation can be considered as a limiting case of our convex formulation. Numerical experiments on synthetic and real-world data sets demonstrate that our method outperforms existing aggregation methods as well as direct methods, in terms of the classification accuracy and the quality of class membership probability estimates.Comment: Appeared in Proceedings of the 2014 SIAM International Conference on Data Mining (SDM 2014

    Constructions of Generalized Concatenated Codes and Their Trellis-Based Decoding Complexity

    Get PDF
    In this correspondence, constructions of generalized concatenated (GC) codes with good rates and distances are presented. Some of the proposed GC codes have simpler trellis omplexity than Euclidean geometry (EG), Reed–Muller (RM), or Bose–Chaudhuri–Hocquenghem (BCH) codes of approximately the same rates and minimum distances, and in addition can be decoded with trellis-based multistage decoding up to their minimum distances. Several codes of the same length, dimension, and minimum distance as the best linear codes known are constructed
    • …
    corecore