4,998 research outputs found

    Higher-order CIS codes

    Full text link
    We introduce {\bf complementary information set codes} of higher-order. A binary linear code of length tktk and dimension kk is called a complementary information set code of order tt (tt-CIS code for short) if it has tt pairwise disjoint information sets. The duals of such codes permit to reduce the cost of masking cryptographic algorithms against side-channel attacks. As in the case of codes for error correction, given the length and the dimension of a tt-CIS code, we look for the highest possible minimum distance. In this paper, this new class of codes is investigated. The existence of good long CIS codes of order 33 is derived by a counting argument. General constructions based on cyclic and quasi-cyclic codes and on the building up construction are given. A formula similar to a mass formula is given. A classification of 3-CIS codes of length ≤12\le 12 is given. Nonlinear codes better than linear codes are derived by taking binary images of Z4\Z_4-codes. A general algorithm based on Edmonds' basis packing algorithm from matroid theory is developed with the following property: given a binary linear code of rate 1/t1/t it either provides tt disjoint information sets or proves that the code is not tt-CIS. Using this algorithm, all optimal or best known [tk,k][tk, k] codes where t=3,4,…,256t=3, 4, \dots, 256 and 1≤k≤⌊256/t⌋1 \le k \le \lfloor 256/t \rfloor are shown to be tt-CIS for all such kk and tt, except for t=3t=3 with k=44k=44 and t=4t=4 with k=37k=37.Comment: 13 pages; 1 figur

    XONN: XNOR-based Oblivious Deep Neural Network Inference

    Get PDF
    Advancements in deep learning enable cloud servers to provide inference-as-a-service for clients. In this scenario, clients send their raw data to the server to run the deep learning model and send back the results. One standing challenge in this setting is to ensure the privacy of the clients' sensitive data. Oblivious inference is the task of running the neural network on the client's input without disclosing the input or the result to the server. This paper introduces XONN, a novel end-to-end framework based on Yao's Garbled Circuits (GC) protocol, that provides a paradigm shift in the conceptual and practical realization of oblivious inference. In XONN, the costly matrix-multiplication operations of the deep learning model are replaced with XNOR operations that are essentially free in GC. We further provide a novel algorithm that customizes the neural network such that the runtime of the GC protocol is minimized without sacrificing the inference accuracy. We design a user-friendly high-level API for XONN, allowing expression of the deep learning model architecture in an unprecedented level of abstraction. Extensive proof-of-concept evaluation on various neural network architectures demonstrates that XONN outperforms prior art such as Gazelle (USENIX Security'18) by up to 7x, MiniONN (ACM CCS'17) by 93x, and SecureML (IEEE S&P'17) by 37x. State-of-the-art frameworks require one round of interaction between the client and the server for each layer of the neural network, whereas, XONN requires a constant round of interactions for any number of layers in the model. XONN is first to perform oblivious inference on Fitnet architectures with up to 21 layers, suggesting a new level of scalability compared with state-of-the-art. Moreover, we evaluate XONN on four datasets to perform privacy-preserving medical diagnosis.Comment: To appear in USENIX Security 201

    LeakWatch: Estimating Information Leakage from Java Programs

    Get PDF
    Abstract. Programs that process secret data may inadvertently reveal information about those secrets in their publicly-observable output. This paper presents LeakWatch, a quantitative information leakage analysis tool for the Java programming language; it is based on a flexible “point-to-point ” information leakage model, where secret and publiclyobservable data may occur at any time during a program’s execution. LeakWatch repeatedly executes a Java program containing both secret and publicly-observable data and uses robust statistical techniques to provide estimates, with confidence intervals, for min-entropy leakage (using a new theoretical result presented in this paper) and mutual information. We demonstrate how LeakWatch can be used to estimate the size of information leaks in a range of real-world Java programs
    • …
    corecore