318,294 research outputs found

    Removing and restoring control flow with the Value State Dependence Graph

    Get PDF
    This thesis studies the practicality of compiling with only data flow information. Specifically, we focus on the challenges that arise when using the Value State Dependence Graph (VSDG) as an intermediate representation (IR). We perform a detailed survey of IRs in the literature in order to discover trends over time, and we classify them by their features in a taxonomy. We see how the VSDG fits into the IR landscape, and look at the divide between academia and the 'real world' in terms of compiler technology. Since most data flow IRs cannot be constructed for irreducible programs, we perform an empirical study of irreducibility in current versions of open source software, and then compare them with older versions of the same software. We also study machine-generated C code from a variety of different software tools. We show that irreducibility is no longer a problem, and is becoming less so with time. We then address the problem of constructing the VSDG. Since previous approaches in the literature have been poorly documented or ignored altogether, we give our approach to constructing the VSDG from a common IR: the Control Flow Graph. We show how our approach is independent of the source and target language, how it is able to handle unstructured control flow, and how it is able to transform irreducible programs on the fly. Once the VSDG is constructed, we implement Lawrence's proceduralisation algorithm in order to encode an evaluation strategy whilst translating the program into a parallel representation: the Program Dependence Graph. From here, we implement scheduling and then code generation using the LLVM compiler. We compare our compiler framework against several existing compilers, and show how removing control flow with the VSDG and then restoring it later can produce high quality code. We also examine specific situations where the VSDG can put pressure on existing code generators. Our results show that the VSDG represents a radically different, yet practical, approach to compilation

    PENCIL: Towards a Platform-Neutral Compute Intermediate Language for DSLs

    Full text link
    We motivate the design and implementation of a platform-neutral compute intermediate language (PENCIL) for productive and performance-portable accelerator programming

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Feasibility of EPC to BPEL Model Transformations Based on Ontology and Patterns

    Get PDF
    Model-Driven Engineering holds the promise of transforming\ud business models into code automatically. This requires the concept of\ud model transformation. In this paper, we assess the feasibility of model\ud transformations from Event-driven Process Chain models to Business\ud Process Execution Language specifications. To this purpose, we use a\ud framework based on ontological analysis and workflow patterns in order\ud to predict the possibilities/limitations of such a model transformation.\ud The framework is validated by evaluating the transformation of several\ud models, including a real-life case.\ud The framework indicates several limitations for transformation. Eleven\ud guidelines and an approach to apply them provide methodological support\ud to improve the feasibility of model transformation from EPC to\ud BPEL

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Patterns-based Evaluation of Open Source BPM Systems: The Cases of jBPM, OpenWFE, and Enhydra Shark

    Get PDF
    In keeping with the proliferation of free software development initiatives and the increased interest in the business process management domain, many open source workflow and business process management systems have appeared during the last few years and are now under active development. This upsurge gives rise to two important questions: what are the capabilities of these systems? and how do they compare to each other and to their closed source counterparts? i.e. in other words what is the state-of-the-art in the area?. To gain an insight into the area, we have conducted an in-depth analysis of three of the major open source workflow management systems - jBPM, OpenWFE and Enhydra Shark, the results of which are reported here. This analysis is based on the workflow patterns framework and provides a continuation of the series of evaluations performed using the same framework on closed source systems, business process modeling languages and web-service composition standards. The results from evaluations of the three open source systems are compared with each other and also with the results from evaluations of three representative closed source systems - Staffware, WebSphere MQ and Oracle BPEL PM, documented in earlier works. The overall conclusion is that open source systems are targeted more toward developers rather than business analysts. They generally provide less support for the patterns than closed source systems, particularly with respect to the resource perspective which describes the various ways in which work is distributed amongst business users and managed through to completion
    corecore