13,110 research outputs found

    Information Entropy in Cosmology

    Full text link
    The effective evolution of an inhomogeneous cosmological model may be described in terms of spatially averaged variables. We point out that in this context, quite naturally, a measure arises which is identical to a fluid model of the `Kullback-Leibler Relative Information Entropy', expressing the distinguishability of the local inhomogeneous mass density field from its spatial average on arbitrary compact domains. We discuss the time-evolution of `effective information' and explore some implications. We conjecture that the information content of the Universe -- measured by Relative Information Entropy of a cosmological model containing dust matter -- is increasing.Comment: LateX, PRLstyle, 4 pages; to appear in PR

    Information entropy in fragmenting systems

    Get PDF
    The possibility of facing critical phenomena in nuclear fragmentation is a topic of great interest. Different observables have been proposed to identify such a behavior, in particular, some related to the use of information entropy as a possible signal of critical behavior. In this work we critically examine some of the most widespread used ones comparing its performance in bond percolation and in the analysis of fragmenting Lennard Jones Drops.Comment: 3 pages, 3 figure

    Information entropy and dark energy evolution

    Full text link
    The information entropy is here investigated in the context of early and late cosmology under the hypothesis that distinct phases of universe evolution are entangled between them. The approach is based on the \emph{entangled state ansatz}, representing a coarse-grained definition of primordial \emph{dark temperature} associated to an \emph{effective entangled energy density}. The dark temperature definition comes from assuming either Von Neumann or linear entropy as sources of cosmological thermodynamics. We interpret the involved information entropies by means of probabilities of forming structures during cosmic evolution. Following this recipe, we propose that quantum entropy is simply associated to the thermodynamical entropy and we investigate the consequences of our approach using the adiabatic sound speed. As byproducts, we analyze two phases of universe evolution: the late and early stages. To do so, we first recover that dark energy reduces to a pure cosmological constant, as zero-order entanglement contribution, and second that inflation is well-described by means of an effective potential. In both cases, we infer numerical limits which are compatible with current observations.Comment: 12 pages, 1 figur

    Information entropy and nucleon correlations in nuclei

    Full text link
    The information entropies in coordinate and momentum spaces and their sum (SrS_r, SkS_k, SS) are evaluated for many nuclei using "experimental" densities or/and momentum distributions. The results are compared with the harmonic oscillator model and with the short-range correlated distributions. It is found that SrS_r depends strongly on lnA\ln A and does not depend very much on the model. The behaviour of SkS_k is opposite. The various cases we consider can be classified according to either the quantity of the experimental data we use or by the values of SS, i.e., the increase of the quality of the density and of the momentum distributions leads to an increase of the values of SS. In all cases, apart from the linear relation S=a+blnAS=a+b\ln A, the linear relation S=aV+bVlnVS=a_V+b_V \ln V also holds. V is the mean volume of the nucleus. If SS is considered as an ensemble entropy, a relation between AA or VV and the ensemble volume can be found. Finally, comparing different electron scattering experiments for the same nucleus, it is found that the larger the momentum transfer ranges, the larger the information entropy is. It is concluded that SS could be used to compare different experiments for the same nucleus and to choose the most reliable one.Comment: 14 pages, 4 figures, 2 table

    The information entropy of quantum mechanical states

    Full text link
    It is well known that a Shannon based definition of information entropy leads in the classical case to the Boltzmann entropy. It is tempting to regard the Von Neumann entropy as the corresponding quantum mechanical definition. But the latter is problematic from quantum information point of view. Consequently we introduce a new definition of entropy that reflects the inherent uncertainty of quantum mechanical states. We derive for it an explicit expression, and discuss some of its general properties. We distinguish between the minimum uncertainty entropy of pure states, and the excess statistical entropy of mixtures.Comment: 7 pages, 1 figur
    corecore