2 research outputs found

    Few-Shot Adversarial Domain Adaptation

    Full text link
    This work provides a framework for addressing the problem of supervised domain adaptation with deep models. The main idea is to exploit adversarial learning to learn an embedded subspace that simultaneously maximizes the confusion between two domains while semantically aligning their embedding. The supervised setting becomes attractive especially when there are only a few target data samples that need to be labeled. In this few-shot learning scenario, alignment and separation of semantic probability distributions is difficult because of the lack of data. We found that by carefully designing a training scheme whereby the typical binary adversarial discriminator is augmented to distinguish between four different classes, it is possible to effectively address the supervised adaptation problem. In addition, the approach has a high speed of adaptation, i.e. it requires an extremely low number of labeled target training samples, even one per category can be effective. We then extensively compare this approach to the state of the art in domain adaptation in two experiments: one using datasets for handwritten digit recognition, and one using datasets for visual object recognition.Comment: Accepted to NIPS 2017. arXiv admin note: text overlap with arXiv:1709.1019

    Improving Unsupervised Domain Adaptation with Variational Information Bottleneck

    Full text link
    Domain adaptation aims to leverage the supervision signal of source domain to obtain an accurate model for target domain, where the labels are not available. To leverage and adapt the label information from source domain, most existing methods employ a feature extracting function and match the marginal distributions of source and target domains in a shared feature space. In this paper, from the perspective of information theory, we show that representation matching is actually an insufficient constraint on the feature space for obtaining a model with good generalization performance in target domain. We then propose variational bottleneck domain adaptation (VBDA), a new domain adaptation method which improves feature transferability by explicitly enforcing the feature extractor to ignore the task-irrelevant factors and focus on the information that is essential to the task of interest for both source and target domains. Extensive experimental results demonstrate that VBDA significantly outperforms state-of-the-art methods across three domain adaptation benchmark datasets
    corecore