2,471 research outputs found
Italian Wikipedia and epilepsy: an infodemiological study of online information-seeking behavior
Wikipedia is the most commonly accessed source of health information by both healthcare professionals and the lay public worldwide. We aimed to evaluate information-seeking behavior of Internet users searching the Italian Wikipedia for articles related to epilepsy and its treatment. Using Pageviews Analysis, we assessed the total and mean monthly views of articles from the Italian Wikipedia devoted to epilepsy, epileptic syndromes, seizure type, and antiepileptic drugs (AEDs) from January 1, 2015 to October 31, 2017. We compared the views of the article on epilepsy with those of articles focusing on Alzheimer's disease, migraine, multiple sclerosis, syncope, and stroke and adjusted all results for crude disease prevalence. With the only exception of the article on multiple sclerosis, the adjusted views for the Italian Wikipedia article on epilepsy were higher than those for the other neurological disorders. The most viewed articles on seizure type were devoted to tonic-clonic seizure, typical absence seizure, tonic convulsive seizures, and clonic convulsive seizures. The most frequently accessed articles on epilepsy syndromes were about temporal lobe epilepsy and Lennox-Gastaut syndrome. The most frequently viewed articles on AEDs were devoted to valproic acid, carbamazepine, and levetiracetam. Wikipedia searches seem to mirror patients' fears and worries about epilepsy more than its actual epidemiology. The ultimate reasons for searching online remain unknown. Epileptologists and epilepsy scientific societies should make greater efforts to work jointly with Wikipedia to convey more accurate and up-to-date information about epilepsy
Sentiment analysis of health care tweets: review of the methods used.
BACKGROUND: Twitter is a microblogging service where users can send and read short 140-character messages called "tweets." There are several unstructured, free-text tweets relating to health care being shared on Twitter, which is becoming a popular area for health care research. Sentiment is a metric commonly used to investigate the positive or negative opinion within these messages. Exploring the methods used for sentiment analysis in Twitter health care research may allow us to better understand the options available for future research in this growing field. OBJECTIVE: The first objective of this study was to understand which tools would be available for sentiment analysis of Twitter health care research, by reviewing existing studies in this area and the methods they used. The second objective was to determine which method would work best in the health care settings, by analyzing how the methods were used to answer specific health care questions, their production, and how their accuracy was analyzed. METHODS: A review of the literature was conducted pertaining to Twitter and health care research, which used a quantitative method of sentiment analysis for the free-text messages (tweets). The study compared the types of tools used in each case and examined methods for tool production, tool training, and analysis of accuracy. RESULTS: A total of 12 papers studying the quantitative measurement of sentiment in the health care setting were found. More than half of these studies produced tools specifically for their research, 4 used open source tools available freely, and 2 used commercially available software. Moreover, 4 out of the 12 tools were trained using a smaller sample of the study's final data. The sentiment method was trained against, on an average, 0.45% (2816/627,024) of the total sample data. One of the 12 papers commented on the analysis of accuracy of the tool used. CONCLUSIONS: Multiple methods are used for sentiment analysis of tweets in the health care setting. These range from self-produced basic categorizations to more complex and expensive commercial software. The open source and commercial methods are developed on product reviews and generic social media messages. None of these methods have been extensively tested against a corpus of health care messages to check their accuracy. This study suggests that there is a need for an accurate and tested tool for sentiment analysis of tweets trained using a health care setting-specific corpus of manually annotated tweets first
Firsthand Opiates Abuse on Social Media: Monitoring Geospatial Patterns of Interest Through a Digital Cohort
In the last decade drug overdose deaths reached staggering proportions in the
US. Besides the raw yearly deaths count that is worrisome per se, an alarming
picture comes from the steep acceleration of such rate that increased by 21%
from 2015 to 2016. While traditional public health surveillance suffers from
its own biases and limitations, digital epidemiology offers a new lens to
extract signals from Web and Social Media that might be complementary to
official statistics. In this paper we present a computational approach to
identify a digital cohort that might provide an updated and complementary view
on the opioid crisis. We introduce an information retrieval algorithm suitable
to identify relevant subspaces of discussion on social media, for mining data
from users showing explicit interest in discussions about opioid consumption in
Reddit. Moreover, despite the pseudonymous nature of the user base, almost 1.5
million users were geolocated at the US state level, resembling the census
population distribution with a good agreement. A measure of prevalence of
interest in opiate consumption has been estimated at the state level, producing
a novel indicator with information that is not entirely encoded in the standard
surveillance. Finally, we further provide a domain specific vocabulary
containing informal lexicon and street nomenclature extracted by user-generated
content that can be used by researchers and practitioners to implement novel
digital public health surveillance methodologies for supporting policy makers
in fighting the opioid epidemic.Comment: Proceedings of the 2019 World Wide Web Conference (WWW '19
Facts and Fabrications about Ebola: A Twitter Based Study
Microblogging websites like Twitter have been shown to be immensely useful
for spreading information on a global scale within seconds. The detrimental
effect, however, of such platforms is that misinformation and rumors are also
as likely to spread on the network as credible, verified information. From a
public health standpoint, the spread of misinformation creates unnecessary
panic for the public. We recently witnessed several such scenarios during the
outbreak of Ebola in 2014 [14, 1]. In order to effectively counter the medical
misinformation in a timely manner, our goal here is to study the nature of such
misinformation and rumors in the United States during fall 2014 when a handful
of Ebola cases were confirmed in North America. It is a well known convention
on Twitter to use hashtags to give context to a Twitter message (a tweet). In
this study, we collected approximately 47M tweets from the Twitter streaming
API related to Ebola. Based on hashtags, we propose a method to classify the
tweets into two sets: credible and speculative. We analyze these two sets and
study how they differ in terms of a number of features extracted from the
Twitter API. In conclusion, we infer several interesting differences between
the two sets. We outline further potential directions to using this material
for monitoring and separating speculative tweets from credible ones, to enable
improved public health information.Comment: Appears in SIGKDD BigCHat Workshop 201
Health Effects Associated With Electronic Cigarette Use: Automated Mining of Online Forums.
BACKGROUND:Our previous infodemiological study was performed by manually mining health-effect data associated with electronic cigarettes (ECs) from online forums. Manual mining is time consuming and limits the number of posts that can be retrieved. OBJECTIVE:Our goal in this study was to automatically extract and analyze a large number (>41,000) of online forum posts related to the health effects associated with EC use between 2008 and 2015. METHODS:Data were annotated with medical concepts from the Unified Medical Language System using a modified version of the MetaMap tool. Of over 1.4 million posts, 41,216 were used to analyze symptoms (undiagnosed conditions) and disorders (physician-diagnosed terminology) associated with EC use. For each post, sentiment (positive, negative, and neutral) was also assigned. RESULTS:Symptom and disorder data were categorized into 12 organ systems or anatomical regions. Most posts on symptoms and disorders contained negative sentiment, and affected systems were similar across all years. Health effects were reported most often in the neurological, mouth and throat, and respiratory systems. The most frequently reported symptoms and disorders were headache (n=939), coughing (n=852), malaise (n=468), asthma (n=916), dehydration (n=803), and pharyngitis (n=565). In addition, users often reported linked symptoms (eg, coughing and headache). CONCLUSIONS:Online forums are a valuable repository of data that can be used to identify positive and negative health effects associated with EC use. By automating extraction of online information, we obtained more data than in our prior study, identified new symptoms and disorders associated with EC use, determined which systems are most frequently adversely affected, identified specific symptoms and disorders most commonly reported, and tracked health effects over 7 years
Using Web-Based Search Data to Study the Public’s Reactions to Societal Events: The Case of the Sandy Hook Shooting
Background: Internet search is the most common activity on the World Wide Web and generates a vast amount of user-reported data regarding their information-seeking preferences and behavior. Although this data has been successfully used to examine outbreaks, health care utilization, and outcomes related to quality of care, its value in informing public health policy remains unclear. Objective: The aim of this study was to evaluate the role of Internet search query data in health policy development. To do so, we studied the public’s reaction to a major societal event in the context of the 2012 Sandy Hook School shooting incident. Methods: Query data from the Yahoo! search engine regarding firearm-related searches was analyzed to examine changes in user-selected search terms and subsequent websites visited for a period of 14 days before and after the shooting incident. Results: A total of 5,653,588 firearm-related search queries were analyzed. In the after period, queries increased for search terms related to “guns” (+50.06%), “shooting incident” (+333.71%), “ammunition” (+155.14%), and “gun-related laws” (+535.47%). The highest increase (+1054.37%) in Web traffic was seen by news websites following “shooting incident” queries whereas searches for “guns” (+61.02%) and “ammunition” (+173.15%) resulted in notable increases in visits to retail websites. Firearm-related queries generally returned to baseline levels after approximately 10 days. Conclusions: Search engine queries present a viable infodemiology metric on public reactions and subsequent behaviors to major societal events and could be used by policymakers to inform policy development. [JMIR Public Health Surveill 2017;3(1):e12
Tracking internet interest in anabolic-androgenic steroids using Google Trends
Background:
There is a perception that the prevalence of anabolic-androgenic steroid (AAS) use is increasing in the UK, with consequent individual and public health risks. Nevertheless, there is a lack of real-time surveillance data to support the development of effective policy. This paper explores the potential of Google Trends to complement existing surveillance methods by analysing user generated search term data.
Methods:
The Google Trends web tool was used to identify patterns of UK online interest in 15 AAS from January 2011 to December 2015, with 10 ultimately suitable for further analysis. Time series analysis was applied to the data.
Results:
10 steroids were ranked from most to least popular. All compounds had peaks in interest between April to July, potentially indicating a consumer driven desire to attain a desired physique in time for summer. Oral steroids were among the most searched for drugs which may have relevance for current service provision to steroid users.
Conclusion:
Alternative data sources such Google Trends may provide useful additional information to supplement existing surveillance data. The limitations of this method however makes cautious interpretation and triangulation with other data sources essential
- …
