10,804 research outputs found
An Exploratory Study of COVID-19 Misinformation on Twitter
During the COVID-19 pandemic, social media has become a home ground for
misinformation. To tackle this infodemic, scientific oversight, as well as a
better understanding by practitioners in crisis management, is needed. We have
conducted an exploratory study into the propagation, authors and content of
misinformation on Twitter around the topic of COVID-19 in order to gain early
insights. We have collected all tweets mentioned in the verdicts of
fact-checked claims related to COVID-19 by over 92 professional fact-checking
organisations between January and mid-July 2020 and share this corpus with the
community. This resulted in 1 500 tweets relating to 1 274 false and 276
partially false claims, respectively. Exploratory analysis of author accounts
revealed that the verified twitter handle(including Organisation/celebrity) are
also involved in either creating (new tweets) or spreading (retweet) the
misinformation. Additionally, we found that false claims propagate faster than
partially false claims. Compare to a background corpus of COVID-19 tweets,
tweets with misinformation are more often concerned with discrediting other
information on social media. Authors use less tentative language and appear to
be more driven by concerns of potential harm to others. Our results enable us
to suggest gaps in the current scientific coverage of the topic as well as
propose actions for authorities and social media users to counter
misinformation.Comment: 20 pages, nine figures, four tables. Submitted for peer review,
revision
Human Mobility Trends during the COVID-19 Pandemic in the United States
In March of this year, COVID-19 was declared a pandemic and it continues to
threaten public health. This global health crisis imposes limitations on daily
movements, which have deteriorated every sector in our society. Understanding
public reactions to the virus and the non-pharmaceutical interventions should
be of great help to fight COVID-19 in a strategic way. We aim to provide
tangible evidence of the human mobility trends by comparing the day-by-day
variations across the U.S. Large-scale public mobility at an aggregated level
is observed by leveraging mobile device location data and the measures related
to social distancing. Our study captures spatial and temporal heterogeneity as
well as the sociodemographic variations regarding the pandemic propagation and
the non-pharmaceutical interventions. All mobility metrics adapted capture
decreased public movements after the national emergency declaration. The
population staying home has increased in all states and becomes more stable
after the stay-at-home order with a smaller range of fluctuation. There exists
overall mobility heterogeneity between the income or population density groups.
The public had been taking active responses, voluntarily staying home more, to
the in-state confirmed cases while the stay-at-home orders stabilize the
variations. The study suggests that the public mobility trends conform with the
government message urging to stay home. We anticipate our data-driven analysis
offers integrated perspectives and serves as evidence to raise public awareness
and, consequently, reinforce the importance of social distancing while
assisting policymakers.Comment: 11 pages, 9 figure
Detecting East Asian Prejudice on Social Media
The outbreak of COVID-19 has transformed societies across the world as
governments tackle the health, economic and social costs of the pandemic. It
has also raised concerns about the spread of hateful language and prejudice
online, especially hostility directed against East Asia. In this paper we
report on the creation of a classifier that detects and categorizes social
media posts from Twitter into four classes: Hostility against East Asia,
Criticism of East Asia, Meta-discussions of East Asian prejudice and a neutral
class. The classifier achieves an F1 score of 0.83 across all four classes. We
provide our final model (coded in Python), as well as a new 20,000 tweet
training dataset used to make the classifier, two analyses of hashtags
associated with East Asian prejudice and the annotation codebook. The
classifier can be implemented by other researchers, assisting with both online
content moderation processes and further research into the dynamics, prevalence
and impact of East Asian prejudice online during this global pandemic.Comment: 12 page
- …
