2,870 research outputs found

    GENESIS 2: Advanced lunar outpost

    Get PDF
    Advanced, second-generation lunar habitats for astronauts and mission specialists working on the Moon are investigated. The work was based on design constraints set forth in previous publications. Design recommendations are based on environmental response to the lunar environment, habitability, safety, near-term technology, replaceability and modularity, and suitability for NASA lunar research missions in the early 21st century. Scientists, engineers, and architects from NASA/JSC, Wisconsin aeronautical industry, and area universities gave technical input and offered critiques at design reviews throughout the process. The recommended design uses a lunar lava tube, with construction using a combination of Space Station Freedom-derived modules and lightweight Kevlar-laminate inflatables. The outpost includes research laboratories and biotron, crew quarters and support facility, mission control, health maintenance facility, and related areas for functional and psychological requirements. Furniture, specialized equipment, and lighting are included in the design analysis

    Genesis lunar outpost: An evolutionary lunar habitat

    Get PDF
    Students at the University of Wisconsin-Milwaukee Department of Agriculture undertook a series of studies of lunar habitats during the 1989 to 1990 academic year. Undergraduate students from architecture and mechanical and structural engineering with backgrounds in interior design, biology and construction technology were involved in a seminar in the fall semester followed by a design studio in the spring. The studies resulted in three design alternatives for lunar habitation and an integrated design for an early stage lunar outpost

    End to End Satellite Servicing and Space Debris Management

    Get PDF
    There is growing demand for satellite swarms and constellations for global positioning, remote sensing and relay communication in higher LEO orbits. This will result in many obsolete, damaged and abandoned satellites that will remain on-orbit beyond 25 years. These abandoned satellites and space debris maybe economically valuable orbital real-estate and resources that can be reused, repaired or upgraded for future use. Space traffic management is critical to repair damaged satellites, divert satellites into warehouse orbits and effectively de-orbit satellites and space debris that are beyond repair and salvage. Current methods for on-orbit capture, servicing and repair require a large service satellite. However, by accessing abandoned satellites and space debris, there is an inherent heightened risk of damage to a servicing spacecraft. Sending multiple small-robots with each robot specialized in a specific task is a credible alternative, as the system is simple and cost-effective and where loss of one or more robots does not end the mission. In this work, we outline an end to end multirobot system to capture damaged and abandoned spacecraft for salvaging, repair and for de-orbiting. We analyze the feasibility of sending multiple, decentralized robots that can work cooperatively to perform capture of the target satellite as a first step, followed by crawling onto damage satellites to perform detailed mapping. After obtaining a detailed map of the satellite, the robots will proceed to either repair and replace or dismantle components for salvage operations. Finally, the remaining components will be packaged with a de-orbit device for accelerated de-orbit.Comment: 13 pages, 10 figures, Space Traffic Management Conference. arXiv admin note: text overlap with arXiv:1809.02028, arXiv:1809.04459, arXiv:1901.0971

    A preliminary structural analysis of space-based inflatable tubular frame structures

    Get PDF
    The use of inflatable structures has often been proposed for aerospace and planetary applications. The advantages of such structures include low launch weight and easy assembly. The use of inflatables for applications requiring very large frame structures intended for aerospace use are proposed. In order to consider using an inflated truss, the structural behavior of the inflated frame must be examined. The statics of inflated tubes as beams was discussed in the literature, but the dynamics of these elements has not received much attention. In an effort to evaluate the vibration characteristics of the inflated beam a series of free vibration tests of an inflated fabric cantilevers were performed. Results of the tests are presented and models for system behavior posed

    Inflatable habitation for the lunar base

    Get PDF
    Inflatable structures have a number of advantages over rigid modules in providing habitation at a lunar base. Some of these advantages are packaging efficiency, convenience of expansion, flexibility, and psychological benefit to the inhabitants. The relatively small, rigid cylinders fitted to the payload compartment of a launch vehicle are not as efficient volumetrically as a collapsible structure that fits into the same space when packaged, but when deployed is much larger. Pressurized volume is a valuable resource. By providing that resource efficiently, in large units, labor intensive external expansion (such as adding additional modules to the existing base) can be minimized. The expansive interior in an inflatable would facilitate rearrangement of the interior to suite the evolving needs of the base. This large, continuous volume would also relieve claustrophobia, enhancing habitability and improving morale. The purpose of this paper is to explore some of the aspects of inflatable habitat design, including structural, architectural, and environmental considerations. As a specific case, the conceptual design of an inflatable lunar habitat, developed for the Lunar Base Systems Study at the Johnson Space Center, is described

    TransHab: NASA's Large-Scale Inflatable Spacecraft

    Get PDF
    TransHab is a, 27-foot diameter by 40-foot, lightweight inflatable habitation module for space applications. TransHab consists of a lightweight graphite-composite core, 11-foot diameter by 23-foot tall, surrounded by a 27-foot diameter inflatable shell. Originally envisioned to be the habitation module of an interplanetary transit vehicle, TransHab is currently being considered as a module for use on the International Space Station (ISS). During the past two years, several tests have been performed at the NASA/Johnson Space Center to demonstrate and prove the technologies required in building a large-scale inflatable habitation module. This paper discusses the results of these tests which including the following: 1) a structural integrity development test article hydJ"Ostatically tested to four times ambient pressure, 2) a full-scale development test article manufactured, assembled, folded and deployed at vacuum, and 3) extensive hypervelocity impact testing of the micro meteoroid and orbital debris protection system

    Morphing nacelle inlet lip with pneumatic actuators and a flexible nano composite sandwich panel

    Get PDF
    We present a hybrid pneumatic/flexible sandwich structure with thermoplastic nanocomposite skins to enable the morphing of a nacelle inlet lip. The design consists of pneumatic inflatables as actuators and a flexible sandwich panel that morphs under variable pressure combinations to adapt different flight conditions and save fuel. The sandwich panel forms the outer layer of the nacelle inlet lip. It is lightweight, compliant and impact resistant with no discontinuities, and consists of graphene-doped thermoplastic polyurethane (G/ TPU) skins that are supported by an aluminium Flex-core honeycomb in the middle, with near zero in-plane Poisson’s ratio behaviour. A test rig for a reduced-scale demonstrator was designed and built to test the prototype of morphing nacelle with custom-made pneumatic actuators. The output force and the deflections of the experimental demonstrator are verified with the internal pressures of the actuators varying from 0 to 0.41 MPa. The results show the feasibility and promise of the hybrid inflatable/nanocomposite sandwich panel for morphing nacelle airframes

    Inflatable antennas for microwave pwoer transmission

    Get PDF
    Operational phase of the inflatable radiator; inflatable space structures; advantages; inflated thin-film satellites; antenna configuration; 3 meter diameter test paraboloid (HAIR program); and weight breakdown for the 100 meter diameter reflector are outlined. This presentation is represented by viewgraphs only

    Spinoff For Survival

    Get PDF
    The Givens Buoy Raft cannot be overturned, its manufacturer claims and others concur. An independent test group conducted a series of demonstrations and found that every type of raft :I except the Givens could be capsized either by one man boarding or several shifting weight within the raft. Termed by the group "a remarkable stability achievement," the Givens Buoy raft offers the first major advance in inflatable survival equipment in many years. It is a spinoff product resulting in part from NASA technology and in part from years of research by Jim Givens, president of Res-Q-Raft, Inc., of Lake Worth, Florida and Seattle, Washington. NASA used inflatable rafts to transfer astronauts returning from space between their ocean-landed spacecraft and a recovery ship. NASA found a problem in the use of conventional flat-bottom inflatables; they tended to overturn when exposed to the downdraft from helicopters of the recovery fleet. So Johnson Space Center developed a new and highly-effective method of raft stabilization for which NASA secured a patent. Working separately, Jim Givens came up with a very similar system. He subsequently patented his own invention and secured an exclusive patent license to use the NASA technolog
    corecore