355 research outputs found

    A short proof of rigidity of convex polytopes

    Full text link
    We present a much simplified proof of Dehn's theorem on the infinitesimal rigidity of convex polytopes. Our approach is based on the ideas of Trushkina and Schramm.Comment: to appear in Siberian Journal of Mathematics; 5 pages 2 figure

    The rigidity of infinite graphs

    Full text link
    A rigidity theory is developed for the Euclidean and non-Euclidean placements of countably infinite simple graphs in R^d with respect to the classical l^p norms, for d>1 and 1<p<\infty. Generalisations are obtained for the Laman and Henneberg combinatorial characterisations of generic infinitesimal rigidity for finite graphs in the Euclidean plane. Also Tay's multi-graph characterisation of the rigidity of generic finite body-bar frameworks in d-dimensional Euclidean space is generalised to the non-Euclidean l^p norms and to countably infinite graphs. For all dimensions and norms it is shown that a generically rigid countable simple graph is the direct limit of an inclusion tower of finite graphs for which the inclusions satisfy a relative rigidity property. For d>2 a countable graph which is rigid for generic placements in R^d may fail the stronger property of sequential rigidity, while for d=2 the equivalence with sequential rigidity is obtained from the generalised Laman characterisations. Applications are given to the flexibility of non-Euclidean convex polyhedra and to the infinitesimal and continuous rigidity of compact infinitely-faceted simplicial polytopes.Comment: 51 page

    Existence and uniqueness theorem for convex polyhedral metrics on compact surfaces

    Full text link
    We state that any constant curvature Riemannian metric with conical singularities of constant sign curvature on a compact (orientable) surface SS can be realized as a convex polyhedron in a Riemannian or Lorentzian) space-form. Moreover such a polyhedron is unique, up to global isometries, among convex polyhedra invariant under isometries acting on a totally umbilical surface. This general statement falls apart into 10 different cases. The cases when SS is the sphere are classical.Comment: Survey paper. No proof. 10 page

    Expansive Motions and the Polytope of Pointed Pseudo-Triangulations

    Full text link
    We introduce the polytope of pointed pseudo-triangulations of a point set in the plane, defined as the polytope of infinitesimal expansive motions of the points subject to certain constraints on the increase of their distances. Its 1-skeleton is the graph whose vertices are the pointed pseudo-triangulations of the point set and whose edges are flips of interior pseudo-triangulation edges. For points in convex position we obtain a new realization of the associahedron, i.e., a geometric representation of the set of triangulations of an n-gon, or of the set of binary trees on n vertices, or of many other combinatorial objects that are counted by the Catalan numbers. By considering the 1-dimensional version of the polytope of constrained expansive motions we obtain a second distinct realization of the associahedron as a perturbation of the positive cell in a Coxeter arrangement. Our methods produce as a by-product a new proof that every simple polygon or polygonal arc in the plane has expansive motions, a key step in the proofs of the Carpenter's Rule Theorem by Connelly, Demaine and Rote (2000) and by Streinu (2000).Comment: 40 pages, 7 figures. Changes from v1: added some comments (specially to the "Further remarks" in Section 5) + changed to final book format. This version is to appear in "Discrete and Computational Geometry -- The Goodman-Pollack Festschrift" (B. Aronov, S. Basu, J. Pach, M. Sharir, eds), series "Algorithms and Combinatorics", Springer Verlag, Berli

    Remarks on the combinatorial intersection cohomology of fans

    Full text link
    We review the theory of combinatorial intersection cohomology of fans developed by Barthel-Brasselet-Fieseler-Kaup, Bressler-Lunts, and Karu. This theory gives a substitute for the intersection cohomology of toric varieties which has all the expected formal properties but makes sense even for non-rational fans, which do not define a toric variety. As a result, a number of interesting results on the toric gg and hh polynomials have been extended from rational polytopes to general polytopes. We present explicit complexes computing the combinatorial IH in degrees one and two; the degree two complex gives the rigidity complex previously used by Kalai to study g2g_2. We present several new results which follow from these methods, as well as previously unpublished proofs of Kalai that gk(P)=0g_k(P) = 0 implies gk(P∗)=0g_k(P^*) = 0 and gk+1(P)=0g_{k+1}(P) = 0.Comment: 34 pages. Typos fixed; final version, to appear in Pure and Applied Math Quarterl
    • …
    corecore