4,089 research outputs found

    Approximate Capacities of Two-Dimensional Codes by Spatial Mixing

    Full text link
    We apply several state-of-the-art techniques developed in recent advances of counting algorithms and statistical physics to study the spatial mixing property of the two-dimensional codes arising from local hard (independent set) constraints, including: hard-square, hard-hexagon, read/write isolated memory (RWIM), and non-attacking kings (NAK). For these constraints, the strong spatial mixing would imply the existence of polynomial-time approximation scheme (PTAS) for computing the capacity. It was previously known for the hard-square constraint the existence of strong spatial mixing and PTAS. We show the existence of strong spatial mixing for hard-hexagon and RWIM constraints by establishing the strong spatial mixing along self-avoiding walks, and consequently we give PTAS for computing the capacities of these codes. We also show that for the NAK constraint, the strong spatial mixing does not hold along self-avoiding walks

    Group actions on 1-manifolds: a list of very concrete open questions

    Full text link
    This text focuses on actions on 1-manifolds. We present a (non exhaustive) list of very concrete open questions in the field, each of which is discussed in some detail and complemented with a large list of references, so that a clear panorama on the subject arises from the lecture.Comment: 21 pages, 2 figure

    Critical Phenomena with Linked Cluster Expansions in a Finite Volume

    Full text link
    Linked cluster expansions are generalized from an infinite to a finite volume. They are performed to 20th order in the expansion parameter to approach the critical region from the symmetric phase. A new criterion is proposed to distinguish 1st from 2nd order transitions within a finite size scaling analysis. The criterion applies also to other methods for investigating the phase structure such as Monte Carlo simulations. Our computational tools are illustrated at the example of scalar O(N) models with four and six-point couplings for N=1N=1 and N=4N=4 in three dimensions. It is shown how to localize the tricritical line in these models. We indicate some further applications of our methods to the electroweak transition as well as to models for superconductivity.Comment: 36 pages, latex2e, 7 eps figures included, uuencoded, gzipped and tarred tex file hdth9607.te

    Measuring the dimension of partially embedded networks

    Get PDF
    Scaling phenomena have been intensively studied during the past decade in the context of complex networks. As part of these works, recently novel methods have appeared to measure the dimension of abstract and spatially embedded networks. In this paper we propose a new dimension measurement method for networks, which does not require global knowledge on the embedding of the nodes, instead it exploits link-wise information (link lengths, link delays or other physical quantities). Our method can be regarded as a generalization of the spectral dimension, that grasps the network's large-scale structure through local observations made by a random walker while traversing the links. We apply the presented method to synthetic and real-world networks, including road maps, the Internet infrastructure and the Gowalla geosocial network. We analyze the theoretically and empirically designated case when the length distribution of the links has the form P(r) ~ 1/r. We show that while previous dimension concepts are not applicable in this case, the new dimension measure still exhibits scaling with two distinct scaling regimes. Our observations suggest that the link length distribution is not sufficient in itself to entirely control the dimensionality of complex networks, and we show that the proposed measure provides information that complements other known measures
    • …
    corecore