50,856 research outputs found

    Constructing the Optimal Solutions to the Undiscounted Continuous-Time Infinite Horizon Optimization Problems

    Full text link
    We aim to construct the optimal solutions to the undiscounted continuous-time infinite horizon optimization problems, the objective functionals of which may be unbounded. We identify the condition under which the limit of the solutions to the finite horizon problems is optimal for the infinite horizon problems under the overtaking criterion

    Infinite-horizon problems under periodicity constraint

    Full text link
    We study so{\`u}e infinite-horizon optimization problems on spaces of periodic functions for non periodic Lagrangians. The main strategy relies on the reduction to finite horizon thanks in the introduction of an avering operator.We then provide existence results and necessary optimality conditions in which the corresponding averaged Lagrangian appears

    Unconstrained receding-horizon control of nonlinear systems

    Get PDF
    It is well known that unconstrained infinite-horizon optimal control may be used to construct a stabilizing controller for a nonlinear system. We show that similar stabilization results may be achieved using unconstrained finite horizon optimal control. The key idea is to approximate the tail of the infinite horizon cost-to-go using, as terminal cost, an appropriate control Lyapunov function. Roughly speaking, the terminal control Lyapunov function (CLF) should provide an (incremental) upper bound on the cost. In this fashion, important stability characteristics may be retained without the use of terminal constraints such as those employed by a number of other researchers. The absence of constraints allows a significant speedup in computation. Furthermore, it is shown that in order to guarantee stability, it suffices to satisfy an improvement property, thereby relaxing the requirement that truly optimal trajectories be found. We provide a complete analysis of the stability and region of attraction/operation properties of receding horizon control strategies that utilize finite horizon approximations in the proposed class. It is shown that the guaranteed region of operation contains that of the CLF controller and may be made as large as desired by increasing the optimization horizon (restricted, of course, to the infinite horizon domain). Moreover, it is easily seen that both CLF and infinite-horizon optimal control approaches are limiting cases of our receding horizon strategy. The key results are illustrated using a familiar example, the inverted pendulum, where significant improvements in guaranteed region of operation and cost are noted

    Transversality Conditions for Infinite Horizon Variational Problems on Time Scales

    Full text link
    We consider problems of the calculus of variations on unbounded time scales. We prove the validity of the Euler-Lagrange equation on time scales for infinite horizon problems, and a new transversality condition.Comment: Submitted 6-October-2009; Accepted 19-March-2010 in revised form; for publication in "Optimization Letters"

    Pointwise versions of the maximum theorem with applications in optimization

    Get PDF
    AbstractWe establish a sequential version of the Maximum Theorem which is suitable for solving general optimization problems by successive approximation, e.g. finite truncation of an ”infinite” optimization problem. This can then be used to obtain convergence of optimal values and (partial) convergence of optimal solutions. In particular, we do this for general problems in infinite horizon optimization and semi-infinite programming

    Stability of Model Predictive Control with Soft Constraints

    Get PDF
    We derive stability conditions for Model Predictive Control (MPC) with hard constraints on the inputs and "soft" constraints on the outputs for an infinitely long output horizon. We show that with state feedback MPC is globally asymptotically stabilizing if and only if all the eigenvalues of the open loop system are in the closed unit disk. With output feedback the eigenvalues must be strictly inside the unit circle. The on-line optimization problem defining MPC can be posed as a finite dimensional quadratic program even though the output constraints are specified over an infinite horizon
    • …
    corecore