11 research outputs found

    Optimal Causal Rate-Constrained Sampling of the Wiener Process

    Get PDF
    We consider the following communication scenario. An encoder causally observes the Wiener process and decides when and what to transmit about it. A decoder makes real-time estimation of the process using causally received codewords. We determine the causal encoding and decoding policies that jointly minimize the mean-square estimation error, under the long-term communication rate constraint of R bits per second. We show that an optimal encoding policy can be implemented as a causal sampling policy followed by a causal compressing policy. We prove that the optimal encoding policy samples the Wiener process once the innovation passes either โˆš(1/R) or โˆ’โˆš(1/R), and compresses the sign of the innovation (SOI) using a 1-bit codeword. The SOI coding scheme achieves the operational distortion-rate function, which is equal to D^(op)(R)=1/(6R). Surprisingly, this is significantly better than the distortion-rate tradeoff achieved in the limit of infinite delay by the best non-causal code. This is because the SOI coding scheme leverages the free timing information supplied by the zero-delay channel between the encoder and the decoder. The key to unlock that gain is the event-triggered nature of the SOI sampling policy. In contrast, the distortion-rate tradeoffs achieved with deterministic sampling policies are much worse: we prove that the causal informational distortion-rate function in that scenario is as high as D_(DET)(R)=5/(6R). It is achieved by the uniform sampling policy with the sampling interval 1/R. In either case, the optimal strategy is to sample the process as fast as possible and to transmit 1-bit codewords to the decoder without delay

    Infinite Horizon Optimal Transmission Power Control for Remote State Estimation Over Fading Channels

    No full text
    This paper studies the joint design over an infinite horizon of the transmission power controller and remote estimator for state estimation over fading channels. A sensor observes a dynamic process and sends its observations to a remote estimator over a wireless fading channel characterized by a time-homogeneous Markov chain. The successful transmission probability depends on both the channel gains and the transmission power used by the sensor. The transmission power control rule and the remote estimator should be jointly designed, aiming to minimize an infinite-horizon cost consisting of the power usage and the remote estimation error. We formulate the joint optimization problem as an average cost belief-state Markov decision process and prove that there exists an optimal deterministic and stationary policy. We then show that when the monitored dynamic process is scalar or the system matrix is orthogonal, the optimal remote estimates depend only on the most recently received sensor observation, and the optimal transmission power is symmetric and monotonically increasing with respect to the norm of the innovation error.HK RGC; 10.13039/501100004063-Knut and Alice Wallenberg Foundation; 10.13039/501100001729-Swedish Foundation for Strategic Research; Swedish Research Council; VINNOVA; NNSF of Chin
    corecore