1 research outputs found

    Design of implicit routing protocols for large scale mobile wireless sensor networks

    Get PDF
    Strathclyde theses - ask staff. Thesis no. : T13189Most developments in wireless sensor networks (WSNs) routing protocols address static network scenarios. Schemes developed to manage mobility in other mobile networking implementations do not translate effectively to WSNs as the system design parameters are markedly different. Thus this research focuses on the issues of mobility and scalability in order to enable the full potential of WSNs to self-organise and co-operate and in so doing, meet the requirements of a rich mix of applications. In the goal of designing efficient, reliable routing protocols for large scale mobile WSN applications, this work lays the foundation by firstly presenting a strong case supported by extensive simulations, for the use of implicit connections. Then two novel implicit routing protocols - Virtual Grid Paging (VGP) and Virtual Zone Registration and Paging (VZRP) - that treat packet routing from node mobility and network scalability viewpoints are designed and analysed. Implicit routing exploits the connection availability and diversity in the underlying network to provide benefits such as fault tolerance, overhead control and improvement in QoS (Quality of Service) such as delay. Analysis and simulation results show that the proposed protocols guarantee significant improvement, delivering a more reliable, more efficient and better network performance compared with alternatives.Most developments in wireless sensor networks (WSNs) routing protocols address static network scenarios. Schemes developed to manage mobility in other mobile networking implementations do not translate effectively to WSNs as the system design parameters are markedly different. Thus this research focuses on the issues of mobility and scalability in order to enable the full potential of WSNs to self-organise and co-operate and in so doing, meet the requirements of a rich mix of applications. In the goal of designing efficient, reliable routing protocols for large scale mobile WSN applications, this work lays the foundation by firstly presenting a strong case supported by extensive simulations, for the use of implicit connections. Then two novel implicit routing protocols - Virtual Grid Paging (VGP) and Virtual Zone Registration and Paging (VZRP) - that treat packet routing from node mobility and network scalability viewpoints are designed and analysed. Implicit routing exploits the connection availability and diversity in the underlying network to provide benefits such as fault tolerance, overhead control and improvement in QoS (Quality of Service) such as delay. Analysis and simulation results show that the proposed protocols guarantee significant improvement, delivering a more reliable, more efficient and better network performance compared with alternatives
    corecore