2 research outputs found

    Social- and Mobility-Aware Device-to-Device Content Delivery

    Full text link
    Mobile online social network services have seen a rapid increase, in which the huge amount of user-generated social media contents propagating between users via social connections has significantly challenged the traditional content delivery paradigm: First, replicating all of the contents generated by users to edge servers that well "fit" the receivers becomes difficult due to the limited bandwidth and storage capacities. Motivated by device-to-device (D2D) communication that allows users with smart devices to transfer content directly, we propose replicating bandwidth-intensive social contents in a device-to-device manner. Based on large-scale measurement studies on social content propagation and user mobility patterns in edge-network regions, we observe that (1) Device-to-device replication can significantly help users download social contents from nearby neighboring peers; (2) Both social propagation and mobility patterns affect how contents should be replicated; (3) The replication strategies depend on regional characteristics ({\em e.g.}, how users move across regions). Using these measurement insights, we propose a joint \emph{propagation- and mobility-aware} content replication strategy for edge-network regions, in which social contents are assigned to users in edge-network regions according to a joint consideration of social graph, content propagation and user mobility. We formulate the replication scheduling as an optimization problem and design distributed algorithm only using historical, local and partial information to solve it. Trace-driven experiments further verify the superiority of our proposal: compared with conventional pure movement-based and popularity-based approach, our design can significantly (2−42-4 times) improve the amount of social contents successfully delivered by device-to-device replication

    Latent Networks Fusion based Model for Event Recommendation in Offline Ephemeral Social Networks

    Full text link
    With the growing amount of mobile social media, offline ephemeral social networks (OffESNs) are receiving more and more attentions. Offline ephemeral social networks (OffESNs) are the networks created ad-hoc at a specific location for a specific purpose and lasting for short period of time, relying on mobile social media such as Radio Frequency Identification (RFID) and Bluetooth devices. The primary purpose of people in the OffESNs is to acquire and share information via attending prescheduled events. Event Recommendation over this kind of networks can facilitate attendees on selecting the prescheduled events and organizers on making resource planning. However, because of lack of users preference and rating information, as well as explicit social relations, both rating based traditional recommendation methods and social-trust based recommendation methods can no longer work well to recommend events in the OffESNs. To address the challenges such as how to derive users latent preferences and social relations and how to fuse the latent information in a unified model, we first construct two heterogeneous interaction social networks, an event participation network and a physical proximity network. Then, we use them to derive users latent preferences and latent networks on social relations, including like-minded peers, co-attendees and friends. Finally, we propose an LNF (Latent Networks Fusion) model under a pairwise factor graph to infer event attendance probabilities for recommendation. Experiments on an RFID-based real conference dataset have demonstrated the effectiveness of the proposed model compared with typical solutions.Comment: Full version of ACM CIKM2013 pape
    corecore