6 research outputs found

    Growing Graphs with Hyperedge Replacement Graph Grammars

    Full text link
    Discovering the underlying structures present in large real world graphs is a fundamental scientific problem. In this paper we show that a graph's clique tree can be used to extract a hyperedge replacement grammar. If we store an ordering from the extraction process, the extracted graph grammar is guaranteed to generate an isomorphic copy of the original graph. Or, a stochastic application of the graph grammar rules can be used to quickly create random graphs. In experiments on large real world networks, we show that random graphs, generated from extracted graph grammars, exhibit a wide range of properties that are very similar to the original graphs. In addition to graph properties like degree or eigenvector centrality, what a graph "looks like" ultimately depends on small details in local graph substructures that are difficult to define at a global level. We show that our generative graph model is able to preserve these local substructures when generating new graphs and performs well on new and difficult tests of model robustness.Comment: 18 pages, 19 figures, accepted to CIKM 2016 in Indianapolis, I

    Inference of Node Replacement Recursive Graph Grammars

    No full text

    Abstract Inference of Node Replacement Recursive Graph Grammars

    No full text
    In this paper we describe an approach to learning node replacement graph grammars. This approach is based on previous research in frequent isomorphic subgraphs discovery. We extend the search for frequent subgraphs by checking for overlap among the instances of the subgraphs in the input graph. If subgraphs overlap by one node we propose a node replacement grammar production. We also can infer a hierarchy of productions by compressing portions of a graph described by a production and then infer new productions on the compressed graph. We validate this approach in experiments where we generate graphs from known grammars and measure how well our system infers the original grammar from the generated graph
    corecore