20 research outputs found

    Adaptive Linear Estimating Equations

    Full text link
    Sequential data collection has emerged as a widely adopted technique for enhancing the efficiency of data gathering processes. Despite its advantages, such data collection mechanism often introduces complexities to the statistical inference procedure. For instance, the ordinary least squares (OLS) estimator in an adaptive linear regression model can exhibit non-normal asymptotic behavior, posing challenges for accurate inference and interpretation. In this paper, we propose a general method for constructing debiased estimator which remedies this issue. It makes use of the idea of adaptive linear estimating equations, and we establish theoretical guarantees of asymptotic normality, supplemented by discussions on achieving near-optimal asymptotic variance. A salient feature of our estimator is that in the context of multi-armed bandits, our estimator retains the non-asymptotic performance of the least square estimator while obtaining asymptotic normality property. Consequently, this work helps connect two fruitful paradigms of adaptive inference: a) non-asymptotic inference using concentration inequalities and b) asymptotic inference via asymptotic normality.Comment: 16 pages, 3 figure

    Reward Imputation with Sketching for Contextual Batched Bandits

    Full text link
    Contextual batched bandit (CBB) is a setting where a batch of rewards is observed from the environment at the end of each episode, but the rewards of the non-executed actions are unobserved, resulting in partial-information feedback. Existing approaches for CBB often ignore the rewards of the non-executed actions, leading to underutilization of feedback information. In this paper, we propose an efficient approach called Sketched Policy Updating with Imputed Rewards (SPUIR) that completes the unobserved rewards using sketching, which approximates the full-information feedbacks. We formulate reward imputation as an imputation regularized ridge regression problem that captures the feedback mechanisms of both executed and non-executed actions. To reduce time complexity, we solve the regression problem using randomized sketching. We prove that our approach achieves an instantaneous regret with controllable bias and smaller variance than approaches without reward imputation. Furthermore, our approach enjoys a sublinear regret bound against the optimal policy. We also present two extensions, a rate-scheduled version and a version for nonlinear rewards, making our approach more practical. Experimental results show that SPUIR outperforms state-of-the-art baselines on synthetic, public benchmark, and real-world datasets.Comment: Accepted by NeurIPS 202

    Statistical Limits of Adaptive Linear Models: Low-Dimensional Estimation and Inference

    Full text link
    Estimation and inference in statistics pose significant challenges when data are collected adaptively. Even in linear models, the Ordinary Least Squares (OLS) estimator may fail to exhibit asymptotic normality for single coordinate estimation and have inflated error. This issue is highlighted by a recent minimax lower bound, which shows that the error of estimating a single coordinate can be enlarged by a multiple of d\sqrt{d} when data are allowed to be arbitrarily adaptive, compared with the case when they are i.i.d. Our work explores this striking difference in estimation performance between utilizing i.i.d. and adaptive data. We investigate how the degree of adaptivity in data collection impacts the performance of estimating a low-dimensional parameter component in high-dimensional linear models. We identify conditions on the data collection mechanism under which the estimation error for a low-dimensional parameter component matches its counterpart in the i.i.d. setting, up to a factor that depends on the degree of adaptivity. We show that OLS or OLS on centered data can achieve this matching error. In addition, we propose a novel estimator for single coordinate inference via solving a Two-stage Adaptive Linear Estimating equation (TALE). Under a weaker form of adaptivity in data collection, we establish an asymptotic normality property of the proposed estimator.Comment: This paper is accepted at NeurIPS 202

    An Experimental Design for Anytime-Valid Causal Inference on Multi-Armed Bandits

    Full text link
    Typically, multi-armed bandit (MAB) experiments are analyzed at the end of the study and thus require the analyst to specify a fixed sample size in advance. However, in many online learning applications, it is advantageous to continuously produce inference on the average treatment effect (ATE) between arms as new data arrive and determine a data-driven stopping time for the experiment. Existing work on continuous inference for adaptive experiments assumes that the treatment assignment probabilities are bounded away from zero and one, thus excluding nearly all standard bandit algorithms. In this work, we develop the Mixture Adaptive Design (MAD), a new experimental design for multi-armed bandits that enables continuous inference on the ATE with guarantees on statistical validity and power for nearly any bandit algorithm. On a high level, the MAD "mixes" a bandit algorithm of the user's choice with a Bernoulli design through a tuning parameter δt\delta_t, where δt\delta_t is a deterministic sequence that controls the priority placed on the Bernoulli design as the sample size grows. We show that for δt=o(1/t1/4)\delta_t = o\left(1/t^{1/4}\right), the MAD produces a confidence sequence that is asymptotically valid and guaranteed to shrink around the true ATE. We empirically show that the MAD improves the coverage and power of ATE inference in MAB experiments without significant losses in finite-sample reward

    Clip-OGD: An Experimental Design for Adaptive Neyman Allocation in Sequential Experiments

    Full text link
    From clinical development of cancer therapies to investigations into partisan bias, adaptive sequential designs have become increasingly popular method for causal inference, as they offer the possibility of improved precision over their non-adaptive counterparts. However, even in simple settings (e.g. two treatments) the extent to which adaptive designs can improve precision is not sufficiently well understood. In this work, we study the problem of Adaptive Neyman Allocation in a design-based potential outcomes framework, where the experimenter seeks to construct an adaptive design which is nearly as efficient as the optimal (but infeasible) non-adaptive Neyman design, which has access to all potential outcomes. Motivated by connections to online optimization, we propose Neyman Ratio and Neyman Regret as two (equivalent) performance measures of adaptive designs for this problem. We present Clip-OGD, an adaptive design which achieves O~(T)\widetilde{O}(\sqrt{T}) expected Neyman regret and thereby recovers the optimal Neyman variance in large samples. Finally, we construct a conservative variance estimator which facilitates the development of asymptotically valid confidence intervals. To complement our theoretical results, we conduct simulations using data from a microeconomic experiment

    Deeply-debiased off-policy interval estimation

    Get PDF
    Off-policy evaluation learns a target policy’s value with a historical dataset generated by a different behavior policy. In addition to a point estimate, many applications would benefit significantly from having a confidence interval (CI) that quantifies the uncertainty of the point estimate. In this paper, we propose a novel deeply-debiasing procedure to construct an efficient, robust, and flexible CI on a target policy’s value. Our method is justified by theoretical results and numerical experiments. A Python implementation of the proposed procedure is available at https://github.com/RunzheStat/D2OPE

    Did we personalize? Assessing personalization by an online reinforcement learning algorithm using resampling

    Full text link
    There is a growing interest in using reinforcement learning (RL) to personalize sequences of treatments in digital health to support users in adopting healthier behaviors. Such sequential decision-making problems involve decisions about when to treat and how to treat based on the user's context (e.g., prior activity level, location, etc.). Online RL is a promising data-driven approach for this problem as it learns based on each user's historical responses and uses that knowledge to personalize these decisions. However, to decide whether the RL algorithm should be included in an ``optimized'' intervention for real-world deployment, we must assess the data evidence indicating that the RL algorithm is actually personalizing the treatments to its users. Due to the stochasticity in the RL algorithm, one may get a false impression that it is learning in certain states and using this learning to provide specific treatments. We use a working definition of personalization and introduce a resampling-based methodology for investigating whether the personalization exhibited by the RL algorithm is an artifact of the RL algorithm stochasticity. We illustrate our methodology with a case study by analyzing the data from a physical activity clinical trial called HeartSteps, which included the use of an online RL algorithm. We demonstrate how our approach enhances data-driven truth-in-advertising of algorithm personalization both across all users as well as within specific users in the study.Comment: The first two authors contributed equall
    corecore