2 research outputs found

    Mix-nets: Factored Mixtures of Gaussians in Bayesian Networks With Mixed Continuous And Discrete Variables

    Full text link
    Recently developed techniques have made it possible to quickly learn accurate probability density functions from data in low-dimensional continuous space. In particular, mixtures of Gaussians can be fitted to data very quickly using an accelerated EM algorithm that employs multiresolution kd-trees (Moore, 1999). In this paper, we propose a kind of Bayesian networks in which low-dimensional mixtures of Gaussians over different subsets of the domain's variables are combined into a coherent joint probability model over the entire domain. The network is also capable of modeling complex dependencies between discrete variables and continuous variables without requiring discretization of the continuous variables. We present efficient heuristic algorithms for automatically learning these networks from data, and perform comparative experiments illustrated how well these networks model real scientific data and synthetic data. We also briefly discuss some possible improvements to the networks, as well as possible applications.Comment: Appears in Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence (UAI2000

    A Variational Approximation for Bayesian Networks with Discrete and Continuous Latent Variables

    Full text link
    We show how to use a variational approximation to the logistic function to perform approximate inference in Bayesian networks containing discrete nodes with continuous parents. Essentially, we convert the logistic function to a Gaussian, which facilitates exact inference, and then iteratively adjust the variational parameters to improve the quality of the approximation. We demonstrate experimentally that this approximation is faster and potentially more accurate than sampling. We also introduce a simple new technique for handling evidence, which allows us to handle arbitrary distributions on observed nodes, as well as achieving a significant speedup in networks with discrete variables of large cardinality.Comment: Appears in Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI1999
    corecore