1,157,590 research outputs found

    Intestinal Helminthic Infections in School Children, Cibubur, East Jakarta

    Full text link
    An integrated study was conducted on nutrition, physical examination and soil transmitted helminthes (S-TH) in four priminary schools in Cibubur, East Jakarta. In this report is shown data on prevalence and intensity of S-TH infections. Very low prevalences were found for Ascaris lumbricoides (0.0 – 1.6 %) and Trichuris trichiura (2.5 – 8.9 %). Also egg counts per gram (EPG) were very low. The prevalence and intensity rates were very low possibly due to factors such as self-medication, reguler health education and efforts of surrounding factories to improve the health of the community

    Quantifying risks and interventions that have affected the burden of lower respiratory infections among children younger than 5 years: an analysis for the Global Burden of Disease Study 2017.

    Get PDF
    BACKGROUND: Despite large reductions in under-5 lower respiratory infection (LRI) mortality in many locations, the pace of progress for LRIs has generally lagged behind that of other childhood infectious diseases. To better inform programmes and policies focused on preventing and treating LRIs, we assessed the contributions and patterns of risk factor attribution, intervention coverage, and sociodemographic development in 195 countries and territories by drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017) LRI estimates. METHODS: We used four strategies to model LRI burden: the mortality due to LRIs was modelled using vital registration data, demographic surveillance data, and verbal autopsy data in a predictive ensemble modelling tool; the incidence of LRIs was modelled using population representative surveys, health-care utilisation data, and scientific literature in a compartmental meta-regression tool; the attribution of risk factors for LRI mortality was modelled in a counterfactual framework; and trends in LRI mortality were analysed applying changes in exposure to risk factors over time. In GBD, infectious disease mortality, including that due to LRI, is among HIV-negative individuals. We categorised locations based on their burden in 1990 to make comparisons in the changing burden between 1990 and 2017 and evaluate the relative percent change in mortality rate, incidence, and risk factor exposure to explain differences in the health loss associated with LRIs among children younger than 5 years. FINDINGS: In 2017, LRIs caused 808 920 deaths (95% uncertainty interval 747 286-873 591) in children younger than 5 years. Since 1990, there has been a substantial decrease in the number of deaths (from 2 337 538 to 808 920 deaths; 65·4% decrease, 61·5-68·5) and in mortality rate (from 362·7 deaths [330·1-392·0] per 100 000 children to 118·9 deaths [109·8-128·3] per 100 000 children; 67·2% decrease, 63·5-70·1). LRI incidence declined globally (32·4% decrease, 27·2-37·5). The percent change in under-5 mortality rate and incidence has varied across locations. Among the risk factors assessed in this study, those responsible for the greatest decrease in under-5 LRI mortality between 1990 and 2017 were increased coverage of vaccination against Haemophilus influenza type b (11·4% decrease, 0·0-24·5), increased pneumococcal vaccine coverage (6·3% decrease, 6·1-6·3), and reductions in household air pollution (8·4%, 6·8-9·2). INTERPRETATION: Our findings show that there have been substantial but uneven declines in LRI mortality among countries between 1990 and 2017. Although improvements in indicators of sociodemographic development could explain some of these trends, changes in exposure to modifiable risk factors are related to the rates of decline in LRI mortality. No single intervention would universally accelerate reductions in health loss associated with LRIs in all settings, but emphasising the most dominant risk factors, particularly in countries with high case fatality, can contribute to the reduction of preventable deaths. FUNDING: Bill & Melinda Gates Foundation

    Modelling the dynamics of intramammary E. coli infections in dairy cows: understanding mechanisms that distinguish transient from persistent infections

    Get PDF
    The majority of intramammary infections with Escherichia coli in dairy cows result in transient infections with duration of about 10 days or less, although more persistent infections (2 months or longer) have been identified. We apply a mathematical model to explore the role of an intracellular mammary epithelial cell reservoir in the dynamics of infection. We included biological knowledge of the bovine immune response and known characteristics of the bacterial population in both transient and persistent infections. The results indicate that varying the survival duration of the intracellular reservoir reproduces the data for both transient and persistent infections. Survival in an intracellular reservoir is the most likely mechanism that ensures persistence of E. coli infections in mammary glands. Knowledge of the pathogenesis of persistent infections is essential to develop preventive and treatment programmes for these important infections in dairy cows

    Estimating the numbers of malaria infections in blood samples using high-resolution genotyping data

    Get PDF
    People living in endemic areas often habour several malaria infections at once. High-resolution genotyping can distinguish between infections by detecting the presence of different alleles at a polymorphic locus. However the number of infections may not be accurately counted since parasites from multiple infections may carry the same allele. We use simulation to determine the circumstances under which the number of observed genotypes are likely to be substantially less than the number of infections present and investigate the performance of two methods for estimating the numbers of infections from high-resolution genotyping data.THE SIMULATIONS SUGGEST THAT THE PROBLEM IS NOT SUBSTANTIAL IN MOST DATASETS: the disparity between the mean numbers of infections and of observed genotypes was small when there was 20 or more alleles, 20 or more blood samples, a mean number of infections of 6 or less and where the frequency of the most common allele was no greater than 20%. The issue of multiple infections carrying the same allele is unlikely to be a major component of the errors in PCR-based genotyping.Simulations also showed that, with heterogeneity in allele frequencies, the observed frequencies are not a good approximation of the true allele frequencies. The first method that we proposed to estimate the numbers of infections assumes that they are a good approximation and hence did poorly in the presence of heterogeneity. In contrast, the second method by Li et al estimates both the numbers of infections and the true allele frequencies simultaneously and produced accurate estimates of the mean number of infections

    Estimating the number of infections caused by antibiotic-resistant Escherichia coli and Klebsiella pneumoniae in 2014: a modelling study

    Get PDF
    Background: The number of infections caused by resistant organisms is largely unknown. We estimated the number of infections worldwide that are caused by the WHO priority pathogens third-generation cephalosporin-resistant and carbapenem-resistant Escherichia coli and Klebsiella pneumoniae. Methods: We calculated a uniform weighted mean incidence of serious infections caused by antibiotic-susceptible E coli and K pneumoniae using data from 17 countries. Using this uniform incidence, as well as population sizes and country-specific resistance levels, we estimated the number of infections caused by third-generation cephalosporin-resistant and carbapenem-resistant E coli and K pneumoniae in 193 countries in 2014. We also calculated interval estimates derived from changing the fixed incidence of susceptible infections to 1 SD below and above the weighted mean. We compared an additive model with combination models in which resistant infections were replaced by susceptible infections. We distinguished between higher-certainty regions (those with good-quality data sources for resistance levels and resistance ≤30%), moderate-certainty regions (those with good-quality data sources for resistance levels and including some countries with resistance >30%), and low-certainty regions (those in which good-quality data sources for resistance levels were unavailable for countries comprising at least 20% of the region's population, regardless of resistance level). Findings: Using the additive model, we estimated that third-generation cephalosporin-resistant E coli and K pneumoniae caused 6·4 million (interval estimate 3·5–9·2) bloodstream infections and 50·1 million (27·5–72·8) serious infections in 2014; estimates were 5·5 million (3·0–7·9) bloodstream infections and 43·1 million (23·6–62·2) serious infections in the 25% replacement model, 4·6 million (2·5–6·6) bloodstream infections and 36·0 million (19·7–52·2) serious infections in the 50% replacement model, and 3·7 million (2·0–5·3) bloodstream infections and 28·9 million (15·8–41·9) serious infections in the 75% replacement model. Carbapenem-resistant strains caused 0·5 million (0·3–0·7) bloodstream infections and 3·1 million (1·8–4·5) serious infections based on the additive model, 0·5 million (0·3–0·7) bloodstream infections and 3·0 million (1·7–4·3) serious infections based on the 25% replacement model, 0·4 million (0·2–0·6) bloodstream infections and 2·8 million (1·6–4·1) serious infections based on the 50% replacement model, and 0·4 million (0·2–0·6) bloodstream infections and 2·7 million (1·5–3·8) serious infections based on the 75% replacement model. Interpretation: To our knowledge, this study is the first to report estimates of the global number of infections caused by antibiotic-resistant priority pathogens. Uncertainty stems from scant data on resistance levels from low-income and middle-income countries and insufficient knowledge regarding resistance dynamics when resistance is high. Funding: Innovative Medicines Initiative

    Cross-sectional study of the burden of vector-borne and soil-transmitted polyparasitism in rural communities of Coast Province, Kenya.

    Get PDF
    BACKGROUND: In coastal Kenya, infection of human populations by a variety of parasites often results in co-infection or poly-parasitism. These parasitic infections, separately and in conjunction, are a major cause of chronic clinical and sub-clinical human disease and exert a long-term toll on economic welfare of affected populations. Risk factors for these infections are often shared and overlap in space, resulting in interrelated patterns of transmission that need to be considered at different spatial scales. Integration of novel quantitative tools and qualitative approaches is needed to analyze transmission dynamics and design effective interventions. METHODOLOGY: Our study was focused on detecting spatial and demographic patterns of single- and co-infection in six villages in coastal Kenya. Individual and household level data were acquired using cross-sectional, socio-economic, and entomological surveys. Generalized additive models (GAMs and GAMMs) were applied to determine risk factors for infection and co-infections. Spatial analysis techniques were used to detect local clusters of single and multiple infections. PRINCIPAL FINDINGS: Of the 5,713 tested individuals, more than 50% were infected with at least one parasite and nearly 20% showed co-infections. Infections with Schistosoma haematobium (26.0%) and hookworm (21.4%) were most common, as was co-infection by both (6.3%). Single and co-infections shared similar environmental and socio-demographic risk factors. The prevalence of single and multiple infections was heterogeneous among and within communities. Clusters of single and co-infections were detected in each village, often spatially overlapped, and were associated with lower SES and household crowding. CONCLUSION: Parasitic infections and co-infections are widespread in coastal Kenya, and their distributions are heterogeneous across landscapes, but inter-related. We highlighted how shared risk factors are associated with high prevalence of single infections and can result in spatial clustering of co-infections. Spatial heterogeneity and synergistic risk factors for polyparasitism need to be considered when designing surveillance and intervention strategies

    Human Microsporidial Infections

    Get PDF
    Microsporidia are eukaryotic, spore forming obligate intracellular parasites, first recognised over 100 years ago. Microsporidia are becoming increasingly recognised as infectious pathogens causing intestinal and extra-intestinal diseases in both immuno-competent and immuno-suppressed patients. They are characterised by the production of resistant spores that vary in size depending on the species; and poses a unique organelle, the polar tubule (polar filament), which is coiled inside the spore as demonstrated by its ultra structure. Other unusual characteristics are the lack of mitochondria and the prokaryotic-like ribosomes, which indicate the primitive nature of the group. Presently there are seven genera, Enterocytozoon, Encephalitozoon, Nosema, Pleistophora, Trachi pleistophora, Brachiola, vittaforma species which have been reported from human hosts as agents of systemic, ocular, intestinal and muscular infections, are described and the diagnosis, treatment, and source of infections discussed

    Prosthetic joint infections

    Get PDF
    Objectives: To review the available literature on prosthetic joint infections and provide recommendations on management particularly the importance of identifying the causative organism and starting the most appropriate antimicrobial therapy. Methods: The medical literature was searched using PubMed, employing the key words prosthetic joint infections. There appears to be no UK consensus guidelines on the management of prosthetic joint infections or the use of prophylactic antibiotics to prevent them. There is however a number of key documents and trust policies which deal with the subject extensively. We also made use of ‘The Sanford Guide to Antimicrobial therapy 2012’ for the latest recommendations on the correct antimicrobial therapy. Conclusion: Although diagnosis is often difficult, there are a number of investigations which can help us identify the organism. We recommend that the local prevalence of such infections is studied together with identification of the commonest organisms. Work is already underway between the infectious disease team and orthopaedic surgeons to devise locally adapted protocols for the identification and management of such infections. They should work in close liaison to implement the correct treatment which often involves a combination of both surgical and antimicrobial therapy.peer-reviewe

    Acute respiratory infections

    Get PDF
    corecore