29,333 research outputs found

    Association between canine leishmaniosis and Ehrlichia canis co-infection: a prospective case-control study

    Get PDF
    Abstract Background In the Mediterranean basin, Leishmania infantum is a major cause of disease in dogs, which are frequently co-infected with other vector-borne pathogens (VBP). However, the associations between dogs with clinical leishmaniosis (ClinL) and VBP co-infections have not been studied. We assessed the risk of VBP infections in dogs with ClinL and healthy controls. Methods We conducted a prospective case-control study of dogs with ClinL (positive qPCR and ELISA antibody for L. infantum on peripheral blood) and clinically healthy, ideally breed-, sex- and age-matched, control dogs (negative qPCR and ELISA antibody for L. infantum on peripheral blood) from Paphos, Cyprus. We obtained demographic data and all dogs underwent PCR on EDTA-blood extracted DNA for haemoplasma species, Ehrlichia/Anaplasma spp., Babesia spp., and Hepatozoon spp., with DNA sequencing to identify infecting species. We used logistic regression analysis and structural equation modelling (SEM) to evaluate the risk of VBP infections between ClinL cases and controls. Results From the 50 enrolled dogs with ClinL, DNA was detected in 24 (48%) for Hepatozoon spp., 14 (28%) for Mycoplasma haemocanis, 6 (12%) for Ehrlichia canis and 2 (4%) for Anaplasma platys. In the 92 enrolled control dogs, DNA was detected in 41 (45%) for Hepatozoon spp., 18 (20%) for M. haemocanis, 1 (1%) for E. canis and 3 (3%) for A. platys. No Babesia spp. or “Candidatus Mycoplasma haematoparvum” DNA was detected in any dog. No statistical differences were found between the ClinL and controls regarding age, sex, breed, lifestyle and use of ectoparasitic prevention. A significant association between ClinL and E. canis infection (OR = 12.4, 95% CI: 1.5–106.0, P = 0.022) was found compared to controls by multivariate logistic regression. This association was confirmed using SEM, which further identified that younger dogs were more likely to be infected with each of Hepatozoon spp. and M. haemocanis, and dogs with Hepatozoon spp. were more likely to be co-infected with M. haemocanis. Conclusions Dogs with ClinL are at a higher risk of co-infection with E. canis than clinically healthy dogs. We recommend that dogs diagnosed with ClinL should be tested for E. canis co-infection using PCR

    Development of a LAMP assay for detection of Leishmania infantum infection in dogs using conjunctival swab samples

    Get PDF
    Background: Leishmania infantum infections in dogs play a crucial role in the transmission of pathogens causing visceral leishmaniasis to humans in the Gansu province, northwest China. To be able to control zoonotic transmission of the parasite to humans, a non-invasive loop-mediated isothermal amplification (LAMP) assay to specifically detect L. infantum infections in dogs was developed. Methods: The primers used in the LAMP assay were designed to target kinetoplast DNA minicircle sequences of the L. infantum isolate MCAN/CN/90/SC and tested using DNA isolated from promastigotes of different Leishmania species. The LAMP assay was evaluated with conjunctional swab samples obtained from 111 and 33 dogs living in an endemic and a non-endemic region of zoonotic visceral leishmaniasis in the Gansu province, respectively. The LAMP assay was also compared with conventional PCR, ELISA and microscopy using conjunctional swab, serum and bone marrow samples from the dogs, respectively. Results: The LAMP assay detected 1 fg of L. infantum DNA purified from cultured promastigotes which was 10-fold more sensitive than a conventional PCR test using Leishmania genus-specific primers. No cross reaction was observed with DNA isolated from promastigotes of L. donovani, L. major, L. tropica, and L. braziliensis, and the L. infantum reference strain MHOM/TN/80/IPT1. The L. infantum-positive rates obtained for field-collected samples were 61.3%, 58.6%, 40.5% and 10.8% by LAMP, PCR, ELISA and microscopy, respectively. As only one out of the 33 samples from control dogs from the non-endemic region of zoonotic visceral leishmaniasis was positive by the LAMP assay and the PCR test, the observed true negative rate (specificity) was 97% for both methods. Conclusion: This study has shown that the non-invasive, conjunctional swab-based LAMP assay developed was more sensitive in the detection of leishmaniasis in dogs than PCR, ELISA and microscopy. The findings indicate that the LAMP assay is a sensitive and specific method for the field surveillance of domestic dogs, particularly of asymptomatic canines, in ZVL-endemic areas in western China

    Insights on adaptive and innate immunity in canine leishmaniosis

    Get PDF
    Canine leishmaniosis (CanL) is caused by the parasite Leishmania infantum and is a systemic disease, which can present with variable clinical signs, and clinicopathological abnormalities. Clinical manifestations can range from subclinical infection to very severe systemic disease. Leishmaniosis is categorized as a neglected tropical disease and the complex immune responses associated with Leishmania species makes therapeutic treatments and vaccine development challenging for both dogs and humans. In this review, we summarize innate and adaptive immune responses associated with L. infantum infection in dogs, and we discuss the problems associated with the disease as well as potential solutions and the future direction of required research to help control the parasite

    Interactions between BRCA2 and RAD51 for promoting homologous recombination in Leishmania infantum.

    Get PDF
    In most organisms, the primary function of homologous recombination (HR) is to allow genome protection by the faithful repair of DNA double-strand breaks. The vital step of HR is the search for sequence homology, mediated by the RAD51 recombinase, which is stimulated further by proteins mediators such as the tumor suppressor BRCA2. The biochemical interplay between RAD51 and BRCA2 is unknown in Leishmania or Trypanosoma. Here we show that the Leishmania infantum BRCA2 protein possesses several critical features important for the regulation of DNA recombination at the genetic and biochemical level. A BRCA2 null mutant, generated by gene disruption, displayed genomic instability and gene-targeting defects. Furthermore, cytological studies show that LiRAD51 can no longer localize to the nucleus in this mutant. The Leishmania RAD51 and BRCA2 interact together and the purified proteins bind single-strand DNA. Remarkably, LiBRCA2 is a recombination mediator that stimulates the invasion of a resected DNA double-strand break in an undamaged template by LiRAD51 to form a D-loop structure. Collectively, our data show that LiBRCA2 and LiRAD51 promote HR at the genetic and biochemical level in L. infantum, the causative agent of visceral leishmaniasis

    The recombinant protein rSP03B is a valid antigen for screening dog exposure to Phlebotomus perniciosus across foci of canine leishmaniasis

    Get PDF
    The frequency of sandfly-host contacts can be measured by host antibody levels against sandfly salivary proteins. Recombinant salivary proteins are suggested to represent a valid replacement for salivary gland homogenate (SGH); however, it is necessary to prove that such antigens are recognized by antibodies against various populations of the same species. Phlebotomus perniciosus (Diptera: Psychodidae) is the main vector of Leishmania infantum (Trypanosomatida: Trypanosomatidae) in southwest Europe and is widespread from Portugal to Italy. In this study, sera were sampled from naturally exposed dogs from distant regions, including Campania (southern Italy), Umbria (central Italy) and the metropolitan Lisbon region (Portugal), where P. perniciosus is the unique or principal vector species. Sera were screened for anti-P. perniciosus antibodies using SGH and 43-kDa yellow-related recombinant protein (rSP03B). Arobust correlation between antibodies recognizing SGH and rSP03B was detected in all regions, suggesting substantial antigenic cross-reactivity among different P. perniciosus populations. No significant differences in this relationship were detected between regions. Moreover, rSP03B and the native yellow-related protein were shown to share similar antigenic epitopes, as canine immunoglobulin G (IgG) binding to the native protein was inhibited by pre-incubation with the recombinant form. These findings suggest that rSP03B should be regarded as a universal marker of sandfly exposure throughout the geographical distribution of P. perniciosus.Charles University [GAUK 1642314/2014]; European Union (EU) grant [FP7-261504]; EU's Horizon research and innovation programme under the Marie Sklodowska-Curie grant [642609]; Fundacao para a Ciencia e a Tecnologia [SFRH/BPD/44082/2008]; Ministerio da Educacao e Ciencia (Foundation for Science and Technology, Ministry of Education and Science), Portuga

    Heterogeneities in leishmania infantum infection : using skin parasite burdens to identify highly infectious dogs

    Get PDF
    Background: The relationships between heterogeneities in host infection and infectiousness (transmission to arthropod vectors) can provide important insights for disease management. Here, we quantify heterogeneities in Leishmania infantum parasite numbers in reservoir and non-reservoir host populations, and relate this to their infectiousness during natural infection. Tissue parasite number was evaluated as a potential surrogate marker of host transmission potential. Methods: Parasite numbers were measured by qPCR in bone marrow and ear skin biopsies of 82 dogs and 34 crab-eating foxes collected during a longitudinal study in Amazon Brazil, for which previous data was available on infectiousness (by xenodiagnosis) and severity of infection. Results: Parasite numbers were highly aggregated both between samples and between individuals. In dogs, total parasite abundance and relative numbers in ear skin compared to bone marrow increased with the duration and severity of infection. Infectiousness to the sandfly vector was associated with high parasite numbers; parasite number in skin was the best predictor of being infectious. Crab-eating foxes, which typically present asymptomatic infection and are non-infectious, had parasite numbers comparable to those of non-infectious dogs. Conclusions: Skin parasite number provides an indirect marker of infectiousness, and could allow targeted control particularly of highly infectious dogs

    Analysis by RNA-seq of transcriptomic changes elicited by heat shock in Leishmania major

    Get PDF
    Besides their medical relevance, Leishmania is an adequate model for studying post-transcriptional mechanisms of gene expression. In this microorganism, mRNA degradation/stabilization mechanisms together with translational control and post-translational modifications of proteins are the major drivers of gene expression. Leishmania parasites develop as promastigotes in sandflies and as amastigotes in mammalians, and during host transmission, the parasite experiences a sudden temperature increase. Here, changes in the transcriptome of Leishmania major promastigotes after a moderate heat shock were analysed by RNA-seq. Several of the up-regulated transcripts code for heat shock proteins, other for proteins previously reported to be amastigote-specific and many for hypothetical proteins. Many of the transcripts experiencing a decrease in their steady-state levels code for transporters, proteins involved in RNA metabolism or translational factors. In addition, putative long noncoding RNAs were identified among the differentially expressed transcripts. Finally, temperature-dependent changes in the selection of the spliced leader addition sites were inferred from the RNA-seq data, and particular cases were further validated by RT-PCR and Northern blotting. This study provides new insights into the post-transcriptional mechanisms by which Leishmania modulate gene expressionThis work was supported by grants (to B.A. and J.M.R.) from Ministerio de Economía, Industria y Competitividad, project number SAF2017-86965-R (co-funded with FEDER funds), and by the Network of Tropical Diseases Research RICET (RD16/0027/0008), co-funded with FEDER funds. The CBMSO receives institutional grants from the Fundación Ramón Areces and from the Fundación Banco de Santande

    Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy.

    No full text
    Leishmaniasis is a geographically widespread severe disease, with an increasing incidence of two million cases per year and 350 million people from 88 countries at risk. The causative agents are species of Leishmania, a protozoan flagellate. Visceral leishmaniasis, the most severe form of the disease, lethal if untreated, is caused by species of the Leishmania donovani complex. These species are morphologically indistinguishable but have been identified by molecular methods, predominantly multilocus enzyme electrophoresis. We have conducted a multifactorial genetic analysis that includes DNA sequences of protein-coding genes as well as noncoding segments, microsatellites, restriction-fragment length polymorphisms, and randomly amplified polymorphic DNAs, for a total of approximately 18,000 characters for each of 25 geographically representative strains. Genotype is strongly correlated with geographical (continental) origin, but not with current taxonomy or clinical outcome. We propose a new taxonomy, in which Leishmania infantum and L. donovani are the only recognized species of the L. donovani complex, and we present an evolutionary hypothesis for the origin and dispersal of the species. The genus Leishmania may have originated in South America, but diversified after migration into Asia. L. donovani and L. infantum diverged approximately 1 Mya, with further divergence of infraspecific genetic groups between 0.4 and 0.8 Mya. The prevailing mode of reproduction is clonal, but there is evidence of genetic exchange between strains, particularly in Africa

    The study of cells using scanning force microscopy

    Get PDF

    The first detection of Leishmania major in naturally infected Sergentomyia minuta in Portugal

    Get PDF
    Phlebotomine sandflies of the genus Sergentomyia are widely distributed throughout the Old World. It has been suggested that Sergentomyia spp are involved in the transmission of Leishmania in India and Africa, whereas Phlebotomus spp are thought to be the sole vectors of Leishmania in the Old World. In this study, Leishmania major DNA was detected in one Sergentomyia minuta specimen that was collected in the southern region of Portugal. This study challenges the dogma that Leishmania is exclusively transmitted by species of the genus Phlebotomus in the Old World.EU/FEDER [PTDC/CVT/112371/2009]; EU [FP7-261504 EDENext]info:eu-repo/semantics/publishedVersio
    corecore