697 research outputs found

    Zero-Convex Functions, Perturbation Resilience, and Subgradient Projections for Feasibility-Seeking Methods

    Full text link
    The convex feasibility problem (CFP) is at the core of the modeling of many problems in various areas of science. Subgradient projection methods are important tools for solving the CFP because they enable the use of subgradient calculations instead of orthogonal projections onto the individual sets of the problem. Working in a real Hilbert space, we show that the sequential subgradient projection method is perturbation resilient. By this we mean that under appropriate conditions the sequence generated by the method converges weakly, and sometimes also strongly, to a point in the intersection of the given subsets of the feasibility problem, despite certain perturbations which are allowed in each iterative step. Unlike previous works on solving the convex feasibility problem, the involved functions, which induce the feasibility problem's subsets, need not be convex. Instead, we allow them to belong to a wider and richer class of functions satisfying a weaker condition, that we call "zero-convexity". This class, which is introduced and discussed here, holds a promise to solve optimization problems in various areas, especially in non-smooth and non-convex optimization. The relevance of this study to approximate minimization and to the recent superiorization methodology for constrained optimization is explained.Comment: Mathematical Programming Series A, accepted for publicatio

    A Family of Subgradient-Based Methods for Convex Optimization Problems in a Unifying Framework

    Full text link
    We propose a new family of subgradient- and gradient-based methods which converges with optimal complexity for convex optimization problems whose feasible region is simple enough. This includes cases where the objective function is non-smooth, smooth, have composite/saddle structure, or are given by an inexact oracle model. We unified the way of constructing the subproblems which are necessary to be solved at each iteration of these methods. This permitted us to analyze the convergence of these methods in a unified way compared to previous results which required different approaches for each method/algorithm. Our contribution rely on two well-known methods in non-smooth convex optimization: the mirror-descent method by Nemirovski-Yudin and the dual-averaging method by Nesterov. Therefore, our family of methods includes them and many other methods as particular cases. For instance, the proposed family of classical gradient methods and its accelerations generalize Devolder et al.'s, Nesterov's primal/dual gradient methods, and Tseng's accelerated proximal gradient methods. Also our family of methods can partially become special cases of other universal methods, too. As an additional contribution, the novel extended mirror-descent method removes the compactness assumption of the feasible region and the fixation of the total number of iterations which is required by the original mirror-descent method in order to attain the optimal complexity.Comment: 31 pages. v3: Major revision. Research Report B-477, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, February 201

    An Inexact Successive Quadratic Approximation Method for Convex L-1 Regularized Optimization

    Full text link
    We study a Newton-like method for the minimization of an objective function that is the sum of a smooth convex function and an l-1 regularization term. This method, which is sometimes referred to in the literature as a proximal Newton method, computes a step by minimizing a piecewise quadratic model of the objective function. In order to make this approach efficient in practice, it is imperative to perform this inner minimization inexactly. In this paper, we give inexactness conditions that guarantee global convergence and that can be used to control the local rate of convergence of the iteration. Our inexactness conditions are based on a semi-smooth function that represents a (continuous) measure of the optimality conditions of the problem, and that embodies the soft-thresholding iteration. We give careful consideration to the algorithm employed for the inner minimization, and report numerical results on two test sets originating in machine learning
    corecore