176,230 research outputs found

    Robust Intrinsic and Extrinsic Calibration of RGB-D Cameras

    Get PDF
    Color-depth cameras (RGB-D cameras) have become the primary sensors in most robotics systems, from service robotics to industrial robotics applications. Typical consumer-grade RGB-D cameras are provided with a coarse intrinsic and extrinsic calibration that generally does not meet the accuracy requirements needed by many robotics applications (e.g., highly accurate 3D environment reconstruction and mapping, high precision object recognition and localization, ...). In this paper, we propose a human-friendly, reliable and accurate calibration framework that enables to easily estimate both the intrinsic and extrinsic parameters of a general color-depth sensor couple. Our approach is based on a novel two components error model. This model unifies the error sources of RGB-D pairs based on different technologies, such as structured-light 3D cameras and time-of-flight cameras. Our method provides some important advantages compared to other state-of-the-art systems: it is general (i.e., well suited for different types of sensors), based on an easy and stable calibration protocol, provides a greater calibration accuracy, and has been implemented within the ROS robotics framework. We report detailed experimental validations and performance comparisons to support our statements

    Ono: an open platform for social robotics

    Get PDF
    In recent times, the focal point of research in robotics has shifted from industrial ro- bots toward robots that interact with humans in an intuitive and safe manner. This evolution has resulted in the subfield of social robotics, which pertains to robots that function in a human environment and that can communicate with humans in an int- uitive way, e.g. with facial expressions. Social robots have the potential to impact many different aspects of our lives, but one particularly promising application is the use of robots in therapy, such as the treatment of children with autism. Unfortunately, many of the existing social robots are neither suited for practical use in therapy nor for large scale studies, mainly because they are expensive, one-of-a-kind robots that are hard to modify to suit a specific need. We created Ono, a social robotics platform, to tackle these issues. Ono is composed entirely from off-the-shelf components and cheap materials, and can be built at a local FabLab at the fraction of the cost of other robots. Ono is also entirely open source and the modular design further encourages modification and reuse of parts of the platform

    MaestROB: A Robotics Framework for Integrated Orchestration of Low-Level Control and High-Level Reasoning

    Full text link
    This paper describes a framework called MaestROB. It is designed to make the robots perform complex tasks with high precision by simple high-level instructions given by natural language or demonstration. To realize this, it handles a hierarchical structure by using the knowledge stored in the forms of ontology and rules for bridging among different levels of instructions. Accordingly, the framework has multiple layers of processing components; perception and actuation control at the low level, symbolic planner and Watson APIs for cognitive capabilities and semantic understanding, and orchestration of these components by a new open source robot middleware called Project Intu at its core. We show how this framework can be used in a complex scenario where multiple actors (human, a communication robot, and an industrial robot) collaborate to perform a common industrial task. Human teaches an assembly task to Pepper (a humanoid robot from SoftBank Robotics) using natural language conversation and demonstration. Our framework helps Pepper perceive the human demonstration and generate a sequence of actions for UR5 (collaborative robot arm from Universal Robots), which ultimately performs the assembly (e.g. insertion) task.Comment: IEEE International Conference on Robotics and Automation (ICRA) 2018. Video: https://www.youtube.com/watch?v=19JsdZi0TW

    RACE pulls for shared control

    Get PDF
    Maintaining and supporting an aircraft fleet, in a climate of reduced manpower and financial resources, dictates effective utilization of robotics and automation technologies. To help develop a winning robotics and automation program the Air Force Logistics Command created the Robotics and Automation Center of Excellence (RACE). RACE is a command wide focal point. Race is an organic source of expertise to assist the Air Logistic Center (ALC) product directorates in improving process productivity through the judicious insertion of robotics and automation technologies. RACE is a champion for pulling emerging technologies into the aircraft logistic centers. One of those technology pulls is shared control. Small batch sizes, feature uncertainty, and varying work load conspire to make classic industrial robotic solutions impractical. One can view ALC process problems in the context of space robotics without the time delay. The ALC's will benefit greatly from the implementation of a common architecture that supports a range of control actions from fully autonomous to teleoperated. Working with national laboratories and private industry, we hope to transition shared control technology to the depot floor. This paper provides an overview of the RACE internal initiatives and customer support, with particular emphasis on production processes that will benefit from shared control technology

    Asimov's Coming Back

    Get PDF
    Ever since the word ‘ROBOT’ first appeared in a science\ud fiction in 1921, scientists and engineers have been trying\ud different ways to create it. Present technologies in\ud mechanical and electrical engineering makes it possible\ud to have robots in such places as industrial manufacturing\ud and assembling lines. Although they are\ud essentially robotic arms or similarly driven by electrical\ud power and signal control, they could be treated the\ud primitive pioneers in application. Researches in the\ud laboratories go much further. Interdisciplines are\ud directing the evolution of more advanced robots. Among these are artificial\ud intelligence, computational neuroscience, mathematics and robotics. These disciplines\ud come closer as more complex problems emerge.\ud From a robot’s point of view, three basic abilities are needed. They are thinking\ud and memory, sensory perceptions, control and behaving. These are capabilities we\ud human beings have to adapt ourselves to the environment. Although\ud researches on robots, especially on intelligent thinking, progress slowly, a revolution\ud for biological inspired robotics is spreading out in the laboratories all over the world

    Healthcare Robotics

    Full text link
    Robots have the potential to be a game changer in healthcare: improving health and well-being, filling care gaps, supporting care givers, and aiding health care workers. However, before robots are able to be widely deployed, it is crucial that both the research and industrial communities work together to establish a strong evidence-base for healthcare robotics, and surmount likely adoption barriers. This article presents a broad contextualization of robots in healthcare by identifying key stakeholders, care settings, and tasks; reviewing recent advances in healthcare robotics; and outlining major challenges and opportunities to their adoption.Comment: 8 pages, Communications of the ACM, 201
    corecore