7 research outputs found

    Calibrated Explanations: with Uncertainty Information and Counterfactuals

    Full text link
    While local explanations for AI models can offer insights into individual predictions, such as feature importance, they are plagued by issues like instability. The unreliability of feature weights, often skewed due to poorly calibrated ML models, deepens these challenges. Moreover, the critical aspect of feature importance uncertainty remains mostly unaddressed in Explainable AI (XAI). The novel feature importance explanation method presented in this paper, called Calibrated Explanations (CE), is designed to tackle these issues head-on. Built on the foundation of Venn-Abers, CE not only calibrates the underlying model but also delivers reliable feature importance explanations with an exact definition of the feature weights. CE goes beyond conventional solutions by addressing output uncertainty. It accomplishes this by providing uncertainty quantification for both feature weights and the model's probability estimates. Additionally, CE is model-agnostic, featuring easily comprehensible conditional rules and the ability to generate counterfactual explanations with embedded uncertainty quantification. Results from an evaluation with 25 benchmark datasets underscore the efficacy of CE, making it stand as a fast, reliable, stable, and robust solution.Comment: 19 pages, 6 figures, 3 tables, submitted to journa

    Conformal Prediction: a Unified Review of Theory and New Challenges

    Full text link
    In this work we provide a review of basic ideas and novel developments about Conformal Prediction -- an innovative distribution-free, non-parametric forecasting method, based on minimal assumptions -- that is able to yield in a very straightforward way predictions sets that are valid in a statistical sense also in in the finite sample case. The in-depth discussion provided in the paper covers the theoretical underpinnings of Conformal Prediction, and then proceeds to list the more advanced developments and adaptations of the original idea.Comment: arXiv admin note: text overlap with arXiv:0706.3188, arXiv:1604.04173, arXiv:1709.06233, arXiv:1203.5422 by other author

    Well-calibrated Confidence Measures for Multi-label Text Classification with a Large Number of Labels

    Full text link
    We extend our previous work on Inductive Conformal Prediction (ICP) for multi-label text classification and present a novel approach for addressing the computational inefficiency of the Label Powerset (LP) ICP, arrising when dealing with a high number of unique labels. We present experimental results using the original and the proposed efficient LP-ICP on two English and one Czech language data-sets. Specifically, we apply the LP-ICP on three deep Artificial Neural Network (ANN) classifiers of two types: one based on contextualised (bert) and two on non-contextualised (word2vec) word-embeddings. In the LP-ICP setting we assign nonconformity scores to label-sets from which the corresponding p-values and prediction-sets are determined. Our approach deals with the increased computational burden of LP by eliminating from consideration a significant number of label-sets that will surely have p-values below the specified significance level. This reduces dramatically the computational complexity of the approach while fully respecting the standard CP guarantees. Our experimental results show that the contextualised-based classifier surpasses the non-contextualised-based ones and obtains state-of-the-art performance for all data-sets examined. The good performance of the underlying classifiers is carried on to their ICP counterparts without any significant accuracy loss, but with the added benefits of ICP, i.e. the confidence information encapsulated in the prediction sets. We experimentally demonstrate that the resulting prediction sets can be tight enough to be practically useful even though the set of all possible label-sets contains more than 1e+161e+16 combinations. Additionally, the empirical error rates of the obtained prediction-sets confirm that our outputs are well-calibrated
    corecore