2,752 research outputs found

    Exploiting Structural Properties in the Analysis of High-dimensional Dynamical Systems

    Get PDF
    The physical and cyber domains with which we interact are filled with high-dimensional dynamical systems. In machine learning, for instance, the evolution of overparametrized neural networks can be seen as a dynamical system. In networked systems, numerous agents or nodes dynamically interact with each other. A deep understanding of these systems can enable us to predict their behavior, identify potential pitfalls, and devise effective solutions for optimal outcomes. In this dissertation, we will discuss two classes of high-dimensional dynamical systems with specific structural properties that aid in understanding their dynamic behavior. In the first scenario, we consider the training dynamics of multi-layer neural networks. The high dimensionality comes from overparametrization: a typical network has a large depth and hidden layer width. We are interested in the following question regarding convergence: Do network weights converge to an equilibrium point corresponding to a global minimum of our training loss, and how fast is the convergence rate? The key to those questions is the symmetry of the weights, a critical property induced by the multi-layer architecture. Such symmetry leads to a set of time-invariant quantities, called weight imbalance, that restrict the training trajectory to a low-dimensional manifold defined by the weight initialization. A tailored convergence analysis is developed over this low-dimensional manifold, showing improved rate bounds for several multi-layer network models studied in the literature, leading to novel characterizations of the effect of weight imbalance on the convergence rate. In the second scenario, we consider large-scale networked systems with multiple weakly-connected groups. Such a multi-cluster structure leads to a time-scale separation between the fast intra-group interaction due to high intra-group connectivity, and the slow inter-group oscillation, due to the weak inter-group connection. We develop a novel frequency-domain network coherence analysis that captures both the coherent behavior within each group, and the dynamical interaction between groups, leading to a structure-preserving model-reduction methodology for large-scale dynamic networks with multiple clusters under general node dynamics assumptions

    Multivariate Modeling of Quasar Variability with an Attention-based Variational Autoencoder

    Get PDF
    This thesis applied HeTVAE, an attention-based VAE neural network capable of multivariate modeling of time series, to a dataset of several thousand multi-band AGN light curves from ZTF and was one of the first attempts to use a neural network to harness the stochastic light curves in their multivariate form. Whereas standard models of AGN variability make prior assumptions, HeTVAE uses no prior knowledge and is able to learn the data distribution in a regularized latent space, reading semantic information via its up-to-date self-supervised training regimen. We have successfully created a dataset class for preprocessing the irregular multivariate time series and in order to interface with the quasi-off-the-shelf network more conveniently. Also, we have trained several different model iterations using one, two or all three of the filter dimensions from ZTF on Durham’s NCC compute cluster, while configuring useful hyper parameter choices to work robustly for the astronomical dataset. In the network's training, we employed the Adam optimizer with a reduce-on-plateau learning rate schedule and a KL-annealing schedule optimize the VAE’s performance. In experimenting, we show how the VAE has learned the data distribution of the light curves by generating simulated light curves and its interpretability by visualizing attention scores and by visualizing the way the light curves are distributed along the continuous latent space using PCA. We show it orders the light curves across a smooth gradient from those those that have both low amplitude short-term variation and high amplitude long-term variation, to those with little variability, to those with both short-term and long-term high-amplitude variation in the condensed space. We also use PCA to display a potential filtering algorithm that enables parsing through large datasets in an intuitive way and present some of the pitfalls of algorithmic bias in anomaly detection. Finally, we fine-tuned the structurally correct but imprecise multivariate interpolations output by HeTVAE to three objects to show how they could improve constraints on time-delay estimates in the context of reverberation mapping for the relatively poor-cadenced ZTF data. In short, HeTVAE's use cases are ranged and it is a step in the right direction as far as being able to help organize and process the millions of AGN light curves incoming from Vera C. Rubin Observatory’s Legacy Survey of Space and Time in their full 6 optical broadband filter multivariate form

    Impact of conditional modelling for a universal autoregressive quantum state

    Get PDF
    We present a generalized framework toadapt universal quantum state approxima-tors, enabling them to satisfy rigorous nor-malization and autoregressive properties.We also introduce filters as analogues toconvolutional layers in neural networks toincorporate translationally symmetrizedcorrelations in arbitrary quantum states.By applying this framework to the Gaus-sian process state, we enforce autoregres-sive and/or filter properties, analyzingthe impact of the resulting inductive bi-ases on variational flexibility, symmetries,and conserved quantities. In doing sowe bring together different autoregressivestates under a unified framework for ma-chine learning-inspired ans ̈atze. Our re-sults provide insights into how the autore-gressive construction influences the abilityof a variational model to describe corre-lations in spin and fermionic lattice mod-els, as well as ab initio electronic structureproblems where the choice of representa-tion affects accuracy. We conclude that,while enabling efficient and direct sam-pling, thus avoiding autocorrelation andloss of ergodicity issues in Metropolis sam-pling, the autoregressive construction ma-terially constrains the expressivity of themodel in many systems

    Classical and quantum algorithms for scaling problems

    Get PDF
    This thesis is concerned with scaling problems, which have a plethora of connections to different areas of mathematics, physics and computer science. Although many structural aspects of these problems are understood by now, we only know how to solve them efficiently in special cases.We give new algorithms for non-commutative scaling problems with complexity guarantees that match the prior state of the art. To this end, we extend the well-known (self-concordance based) interior-point method (IPM) framework to Riemannian manifolds, motivated by its success in the commutative setting. Moreover, the IPM framework does not obviously suffer from the same obstructions to efficiency as previous methods. It also yields the first high-precision algorithms for other natural geometric problems in non-positive curvature.For the (commutative) problems of matrix scaling and balancing, we show that quantum algorithms can outperform the (already very efficient) state-of-the-art classical algorithms. Their time complexity can be sublinear in the input size; in certain parameter regimes they are also optimal, whereas in others we show no quantum speedup over the classical methods is possible. Along the way, we provide improvements over the long-standing state of the art for searching for all marked elements in a list, and computing the sum of a list of numbers.We identify a new application in the context of tensor networks for quantum many-body physics. We define a computable canonical form for uniform projected entangled pair states (as the solution to a scaling problem), circumventing previously known undecidability results. We also show, by characterizing the invariant polynomials, that the canonical form is determined by evaluating the tensor network contractions on networks of bounded size

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Machine learning applications in search algorithms for gravitational waves from compact binary mergers

    Get PDF
    Gravitational waves from compact binary mergers are now routinely observed by Earth-bound detectors. These observations enable exciting new science, as they have opened a new window to the Universe. However, extracting gravitational-wave signals from the noisy detector data is a challenging problem. The most sensitive search algorithms for compact binary mergers use matched filtering, an algorithm that compares the data with a set of expected template signals. As detectors are upgraded and more sophisticated signal models become available, the number of required templates will increase, which can make some sources computationally prohibitive to search for. The computational cost is of particular concern when low-latency alerts should be issued to maximize the time for electromagnetic follow-up observations. One potential solution to reduce computational requirements that has started to be explored in the last decade is machine learning. However, different proposed deep learning searches target varying parameter spaces and use metrics that are not always comparable to existing literature. Consequently, a clear picture of the capabilities of machine learning searches has been sorely missing. In this thesis, we closely examine the sensitivity of various deep learning gravitational-wave search algorithms and introduce new methods to detect signals from binary black hole and binary neutron star mergers at previously untested statistical confidence levels. By using the sensitive distance as our core metric, we allow for a direct comparison of our algorithms to state-of-the-art search pipelines. As part of this thesis, we organized a global mock data challenge to create a benchmark for machine learning search algorithms targeting compact binaries. This way, the tools developed in this thesis are made available to the greater community by publishing them as open source software. Our studies show that, depending on the parameter space, deep learning gravitational-wave search algorithms are already competitive with current production search pipelines. We also find that strategies developed for traditional searches can be effectively adapted to their machine learning counterparts. In regions where matched filtering becomes computationally expensive, available deep learning algorithms are also limited in their capability. We find reduced sensitivity to long duration signals compared to the excellent results for short-duration binary black hole signals

    Memorization-Dilation: Modeling Neural Collapse Under Label Noise

    Full text link
    The notion of neural collapse refers to several emergent phenomena that have been empirically observed across various canonical classification problems. During the terminal phase of training a deep neural network, the feature embedding of all examples of the same class tend to collapse to a single representation, and the features of different classes tend to separate as much as possible. Neural collapse is often studied through a simplified model, called the unconstrained feature representation, in which the model is assumed to have "infinite expressivity" and can map each data point to any arbitrary representation. In this work, we propose a more realistic variant of the unconstrained feature representation that takes the limited expressivity of the network into account. Empirical evidence suggests that the memorization of noisy data points leads to a degradation (dilation) of the neural collapse. Using a model of the memorization-dilation (M-D) phenomenon, we show one mechanism by which different losses lead to different performances of the trained network on noisy data. Our proofs reveal why label smoothing, a modification of cross-entropy empirically observed to produce a regularization effect, leads to improved generalization in classification tasks.Comment: to be published at ICLR 202

    Transfer Learning for High-dimensional Quantile Regression via Convolution Smoothing

    Full text link
    This paper studies the high-dimensional quantile regression problem under the transfer learning framework, where possibly related source datasets are available to make improvements on the estimation or prediction based solely on the target data. In the oracle case with known transferable sources, a smoothed two-step transfer learning algorithm based on convolution smoothing is proposed and the L1/L2 estimation error bounds of the corresponding estimator are also established. To avoid including non-informative sources, we propose to select the transferable sources adaptively and establish its selection consistency under regular conditions. Monte Carlo simulations as well as an empirical analysis of gene expression data demonstrate the effectiveness of the proposed procedure.Comment: 27 pages, 6 figure

    Domain Adaptation for Time Series Under Feature and Label Shifts

    Full text link
    Unsupervised domain adaptation (UDA) enables the transfer of models trained on source domains to unlabeled target domains. However, transferring complex time series models presents challenges due to the dynamic temporal structure variations across domains. This leads to feature shifts in the time and frequency representations. Additionally, the label distributions of tasks in the source and target domains can differ significantly, posing difficulties in addressing label shifts and recognizing labels unique to the target domain. Effectively transferring complex time series models remains a formidable problem. We present Raincoat, the first model for both closed-set and universal domain adaptation on complex time series. Raincoat addresses feature and label shifts by considering both temporal and frequency features, aligning them across domains, and correcting for misalignments to facilitate the detection of private labels. Additionally, Raincoat improves transferability by identifying label shifts in target domains. Our experiments with 5 datasets and 13 state-of-the-art UDA methods demonstrate that Raincoat can improve transfer learning performance by up to 16.33% and can handle both closed-set and universal domain adaptation.Comment: Accepted by ICML 2023; 29 pages (14 pages main paper + 15 pages supplementary materials). Code: see https://github.com/mims-harvard/Raincoa

    Data- og ekspertdreven variabelseleksjon for prediktive modeller i helsevesenet : mot økt tolkbarhet i underbestemte maskinlæringsproblemer

    Get PDF
    Modern data acquisition techniques in healthcare generate large collections of data from multiple sources, such as novel diagnosis and treatment methodologies. Some concrete examples are electronic healthcare record systems, genomics, and medical images. This leads to situations with often unstructured, high-dimensional heterogeneous patient cohort data where classical statistical methods may not be sufficient for optimal utilization of the data and informed decision-making. Instead, investigating such data structures with modern machine learning techniques promises to improve the understanding of patient health issues and may provide a better platform for informed decision-making by clinicians. Key requirements for this purpose include (a) sufficiently accurate predictions and (b) model interpretability. Achieving both aspects in parallel is difficult, particularly for datasets with few patients, which are common in the healthcare domain. In such cases, machine learning models encounter mathematically underdetermined systems and may overfit easily on the training data. An important approach to overcome this issue is feature selection, i.e., determining a subset of informative features from the original set of features with respect to the target variable. While potentially raising the predictive performance, feature selection fosters model interpretability by identifying a low number of relevant model parameters to better understand the underlying biological processes that lead to health issues. Interpretability requires that feature selection is stable, i.e., small changes in the dataset do not lead to changes in the selected feature set. A concept to address instability is ensemble feature selection, i.e. the process of repeating the feature selection multiple times on subsets of samples of the original dataset and aggregating results in a meta-model. This thesis presents two approaches for ensemble feature selection, which are tailored towards high-dimensional data in healthcare: the Repeated Elastic Net Technique for feature selection (RENT) and the User-Guided Bayesian Framework for feature selection (UBayFS). While RENT is purely data-driven and builds upon elastic net regularized models, UBayFS is a general framework for ensembles with the capabilities to include expert knowledge in the feature selection process via prior weights and side constraints. A case study modeling the overall survival of cancer patients compares these novel feature selectors and demonstrates their potential in clinical practice. Beyond the selection of single features, UBayFS also allows for selecting whole feature groups (feature blocks) that were acquired from multiple data sources, as those mentioned above. Importance quantification of such feature blocks plays a key role in tracing information about the target variable back to the acquisition modalities. Such information on feature block importance may lead to positive effects on the use of human, technical, and financial resources if systematically integrated into the planning of patient treatment by excluding the acquisition of non-informative features. Since a generalization of feature importance measures to block importance is not trivial, this thesis also investigates and compares approaches for feature block importance rankings. This thesis demonstrates that high-dimensional datasets from multiple data sources in the medical domain can be successfully tackled by the presented approaches for feature selection. Experimental evaluations demonstrate favorable properties of both predictive performance, stability, as well as interpretability of results, which carries a high potential for better data-driven decision support in clinical practice.Moderne datainnsamlingsteknikker i helsevesenet genererer store datamengder fra flere kilder, som for eksempel nye diagnose- og behandlingsmetoder. Noen konkrete eksempler er elektroniske helsejournalsystemer, genomikk og medisinske bilder. Slike pasientkohortdata er ofte ustrukturerte, høydimensjonale og heterogene og hvor klassiske statistiske metoder ikke er tilstrekkelige for optimal utnyttelse av dataene og god informasjonsbasert beslutningstaking. Derfor kan det være lovende å analysere slike datastrukturer ved bruk av moderne maskinlæringsteknikker for å øke forståelsen av pasientenes helseproblemer og for å gi klinikerne en bedre plattform for informasjonsbasert beslutningstaking. Sentrale krav til dette formålet inkluderer (a) tilstrekkelig nøyaktige prediksjoner og (b) modelltolkbarhet. Å oppnå begge aspektene samtidig er vanskelig, spesielt for datasett med få pasienter, noe som er vanlig for data i helsevesenet. I slike tilfeller må maskinlæringsmodeller håndtere matematisk underbestemte systemer og dette kan lett føre til at modellene overtilpasses treningsdataene. Variabelseleksjon er en viktig tilnærming for å håndtere dette ved å identifisere en undergruppe av informative variabler med hensyn til responsvariablen. Samtidig som variabelseleksjonsmetoder kan lede til økt prediktiv ytelse, fremmes modelltolkbarhet ved å identifisere et lavt antall relevante modellparametere. Dette kan gi bedre forståelse av de underliggende biologiske prosessene som fører til helseproblemer. Tolkbarhet krever at variabelseleksjonen er stabil, dvs. at små endringer i datasettet ikke fører til endringer i hvilke variabler som velges. Et konsept for å adressere ustabilitet er ensemblevariableseleksjon, dvs. prosessen med å gjenta variabelseleksjon flere ganger på en delmengde av prøvene i det originale datasett og aggregere resultater i en metamodell. Denne avhandlingen presenterer to tilnærminger for ensemblevariabelseleksjon, som er skreddersydd for høydimensjonale data i helsevesenet: "Repeated Elastic Net Technique for feature selection" (RENT) og "User-Guided Bayesian Framework for feature selection" (UBayFS). Mens RENT er datadrevet og bygger på elastic net-regulariserte modeller, er UBayFS et generelt rammeverk for ensembler som muliggjør inkludering av ekspertkunnskap i variabelseleksjonsprosessen gjennom forhåndsbestemte vekter og sidebegrensninger. En case-studie som modellerer overlevelsen av kreftpasienter sammenligner disse nye variabelseleksjonsmetodene og demonstrerer deres potensiale i klinisk praksis. Utover valg av enkelte variabler gjør UBayFS det også mulig å velge blokker eller grupper av variabler som representerer de ulike datakildene som ble nevnt over. Kvantifisering av viktigheten av variabelgrupper spiller en nøkkelrolle for forståelsen av hvorvidt datakildene er viktige for responsvariablen. Tilgang til slik informasjon kan føre til at bruken av menneskelige, tekniske og økonomiske ressurser kan forbedres dersom informasjonen integreres systematisk i planleggingen av pasientbehandlingen. Slik kan man redusere innsamling av ikke-informative variabler. Siden generaliseringen av viktighet av variabelgrupper ikke er triviell, undersøkes og sammenlignes også tilnærminger for rangering av viktigheten til disse variabelgruppene. Denne avhandlingen viser at høydimensjonale datasett fra flere datakilder fra det medisinske domenet effektivt kan håndteres ved bruk av variabelseleksjonmetodene som er presentert i avhandlingen. Eksperimentene viser at disse kan ha positiv en effekt på både prediktiv ytelse, stabilitet og tolkbarhet av resultatene. Bruken av disse variabelseleksjonsmetodene bærer et stort potensiale for bedre datadrevet beslutningsstøtte i klinisk praksis
    corecore