2 research outputs found

    Graph Neural Distance Metric Learning with Graph-Bert

    Full text link
    Graph distance metric learning serves as the foundation for many graph learning problems, e.g., graph clustering, graph classification and graph matching. Existing research works on graph distance metric (or graph kernels) learning fail to maintain the basic properties of such metrics, e.g., non-negative, identity of indiscernibles, symmetry and triangle inequality, respectively. In this paper, we will introduce a new graph neural network based distance metric learning approaches, namely GB-DISTANCE (GRAPH-BERT based Neural Distance). Solely based on the attention mechanism, GB-DISTANCE can learn graph instance representations effectively based on a pre-trained GRAPH-BERT model. Different from the existing supervised/unsupervised metrics, GB-DISTANCE can be learned effectively in a semi-supervised manner. In addition, GB-DISTANCE can also maintain the distance metric basic properties mentioned above. Extensive experiments have been done on several benchmark graph datasets, and the results demonstrate that GB-DISTANCE can out-perform the existing baseline methods, especially the recent graph neural network model based graph metrics, with a significant gap in computing the graph distance.Comment: 11 page

    G5: A Universal GRAPH-BERT for Graph-to-Graph Transfer and Apocalypse Learning

    Full text link
    The recent GRAPH-BERT model introduces a new approach to learning graph representations merely based on the attention mechanism. GRAPH-BERT provides an opportunity for transferring pre-trained models and learned graph representations across different tasks within the same graph dataset. In this paper, we will further investigate the graph-to-graph transfer of a universal GRAPH-BERT for graph representation learning across different graph datasets, and our proposed model is also referred to as the G5 for simplicity. Many challenges exist in learning G5 to adapt the distinct input and output configurations for each graph data source, as well as the information distributions differences. G5 introduces a pluggable model architecture: (a) each data source will be pre-processed with a unique input representation learning component; (b) each output application task will also have a specific functional component; and (c) all such diverse input and output components will all be conjuncted with a universal GRAPH-BERT core component via an input size unification layer and an output representation fusion layer, respectively. The G5 model removes the last obstacle for cross-graph representation learning and transfer. For the graph sources with very sparse training data, the G5 model pre-trained on other graphs can still be utilized for representation learning with necessary fine-tuning. What's more, the architecture of G5 also allows us to learn a supervised functional classifier for data sources without any training data at all. Such a problem is also named as the Apocalypse Learning task in this paper. Two different label reasoning strategies, i.e., Cross-Source Classification Consistency Maximization (CCCM) and Cross-Source Dynamic Routing (CDR), are introduced in this paper to address the problem.Comment: Keywords: Graph-Bert; Representation Learning; Apocalypse Learning; Transfer Learning; Graph Mining; Data Minin
    corecore