1,568 research outputs found

    Mendler-style Iso-(Co)inductive predicates: a strongly normalizing approach

    Full text link
    We present an extension of the second-order logic AF2 with iso-style inductive and coinductive definitions specifically designed to extract programs from proofs a la Krivine-Parigot by means of primitive (co)recursion principles. Our logic includes primitive constructors of least and greatest fixed points of predicate transformers, but contrary to the common approach, we do not restrict ourselves to positive operators to ensure monotonicity, instead we use the Mendler-style, motivated here by the concept of monotonization of an arbitrary operator on a complete lattice. We prove an adequacy theorem with respect to a realizability semantics based on saturated sets and saturated-valued functions and as a consequence we obtain the strong normalization property for the proof-term reduction, an important feature which is absent in previous related work.Comment: In Proceedings LSFA 2011, arXiv:1203.542

    Abstract Interpretation with Unfoldings

    Full text link
    We present and evaluate a technique for computing path-sensitive interference conditions during abstract interpretation of concurrent programs. In lieu of fixed point computation, we use prime event structures to compactly represent causal dependence and interference between sequences of transformers. Our main contribution is an unfolding algorithm that uses a new notion of independence to avoid redundant transformer application, thread-local fixed points to reduce the size of the unfolding, and a novel cutoff criterion based on subsumption to guarantee termination of the analysis. Our experiments show that the abstract unfolding produces an order of magnitude fewer false alarms than a mature abstract interpreter, while being several orders of magnitude faster than solver-based tools that have the same precision.Comment: Extended version of the paper (with the same title and authors) to appear at CAV 201

    From coinductive proofs to exact real arithmetic: theory and applications

    Full text link
    Based on a new coinductive characterization of continuous functions we extract certified programs for exact real number computation from constructive proofs. The extracted programs construct and combine exact real number algorithms with respect to the binary signed digit representation of real numbers. The data type corresponding to the coinductive definition of continuous functions consists of finitely branching non-wellfounded trees describing when the algorithm writes and reads digits. We discuss several examples including the extraction of programs for polynomials up to degree two and the definite integral of continuous maps
    corecore