1,364 research outputs found
f-VAEGAN-D2: A Feature Generating Framework for Any-Shot Learning
When labeled training data is scarce, a promising data augmentation approach
is to generate visual features of unknown classes using their attributes. To
learn the class conditional distribution of CNN features, these models rely on
pairs of image features and class attributes. Hence, they can not make use of
the abundance of unlabeled data samples. In this paper, we tackle any-shot
learning problems i.e. zero-shot and few-shot, in a unified feature generating
framework that operates in both inductive and transductive learning settings.
We develop a conditional generative model that combines the strength of VAE and
GANs and in addition, via an unconditional discriminator, learns the marginal
feature distribution of unlabeled images. We empirically show that our model
learns highly discriminative CNN features for five datasets, i.e. CUB, SUN, AWA
and ImageNet, and establish a new state-of-the-art in any-shot learning, i.e.
inductive and transductive (generalized) zero- and few-shot learning settings.
We also demonstrate that our learned features are interpretable: we visualize
them by inverting them back to the pixel space and we explain them by
generating textual arguments of why they are associated with a certain label.Comment: Accepted at CVPR 201
Online Matrix Completion with Side Information
We give an online algorithm and prove novel mistake and regret bounds for
online binary matrix completion with side information. The mistake bounds we
prove are of the form . The term is
analogous to the usual margin term in SVM (perceptron) bounds. More
specifically, if we assume that there is some factorization of the underlying
matrix into where the rows of are interpreted
as "classifiers" in and the rows of as "instances" in
, then is the maximum (normalized) margin over all
factorizations consistent with the observed matrix. The
quasi-dimension term measures the quality of side information. In the
presence of vacuous side information, . However, if the side
information is predictive of the underlying factorization of the matrix, then
in an ideal case, where is the number of distinct row
factors and is the number of distinct column factors. We additionally
provide a generalization of our algorithm to the inductive setting. In this
setting, we provide an example where the side information is not directly
specified in advance. For this example, the quasi-dimension is now bounded
by
Representation Learning for cold-start recommendation
A standard approach to Collaborative Filtering (CF), i.e. prediction of user
ratings on items, relies on Matrix Factorization techniques. Representations
for both users and items are computed from the observed ratings and used for
prediction. Unfortunatly, these transductive approaches cannot handle the case
of new users arriving in the system, with no known rating, a problem known as
user cold-start. A common approach in this context is to ask these incoming
users for a few initialization ratings. This paper presents a model to tackle
this twofold problem of (i) finding good questions to ask, (ii) building
efficient representations from this small amount of information. The model can
also be used in a more standard (warm) context. Our approach is evaluated on
the classical CF problem and on the cold-start problem on four different
datasets showing its ability to improve baseline performance in both cases.Comment: Accepted as workshop contribution at ICLR 201
- …