4 research outputs found

    Induced Ramsey-type results and binary predicates for point sets

    Full text link
    Let kk and pp be positive integers and let QQ be a finite point set in general position in the plane. We say that QQ is (k,p)(k,p)-Ramsey if there is a finite point set PP such that for every kk-coloring cc of (Pp)\binom{P}{p} there is a subset QQ' of PP such that QQ' and QQ have the same order type and (Qp)\binom{Q'}{p} is monochromatic in cc. Ne\v{s}et\v{r}il and Valtr proved that for every kNk \in \mathbb{N}, all point sets are (k,1)(k,1)-Ramsey. They also proved that for every k2k \ge 2 and p2p \ge 2, there are point sets that are not (k,p)(k,p)-Ramsey. As our main result, we introduce a new family of (k,2)(k,2)-Ramsey point sets, extending a result of Ne\v{s}et\v{r}il and Valtr. We then use this new result to show that for every kk there is a point set PP such that no function Γ\Gamma that maps ordered pairs of distinct points from PP to a set of size kk can satisfy the following "local consistency" property: if Γ\Gamma attains the same values on two ordered triples of points from PP, then these triples have the same orientation. Intuitively, this implies that there cannot be such a function that is defined locally and determines the orientation of point triples.Comment: 22 pages, 3 figures, final version, minor correction

    Induced monochromatic subconfigurations

    No full text

    Induced monochromatic subconfigurations

    No full text
    corecore