54,051 research outputs found

    Equitable partition of graphs into induced forests

    Full text link
    An equitable partition of a graph GG is a partition of the vertex-set of GG such that the sizes of any two parts differ by at most one. We show that every graph with an acyclic coloring with at most kk colors can be equitably partitioned into k−1k-1 induced forests. We also prove that for any integers d≥1d\ge 1 and k≥3d−1k\ge 3^{d-1}, any dd-degenerate graph can be equitably partitioned into kk induced forests. Each of these results implies the existence of a constant cc such that for any k≥ck \ge c, any planar graph has an equitable partition into kk induced forests. This was conjectured by Wu, Zhang, and Li in 2013.Comment: 4 pages, final versio

    Isolating highly connected induced subgraphs

    Full text link
    We prove that any graph GG of minimum degree greater than 2k2−12k^2-1 has a (k+1)(k+1)-connected induced subgraph HH such that the number of vertices of HH that have neighbors outside of HH is at most 2k2−12k^2-1. This generalizes a classical result of Mader, which states that a high minimum degree implies the existence of a highly connected subgraph. We give several variants of our result, and for each of these variants, we give asymptotics for the bounds. We also we compute optimal values for the case when k=2k=2. Alon, Kleitman, Saks, Seymour, and Thomassen proved that in a graph of high chromatic number, there exists an induced subgraph of high connectivity and high chromatic number. We give a new proof of this theorem with a better bound

    Topological and geometrical restrictions, free-boundary problems and self-gravitating fluids

    Full text link
    Let (P1) be certain elliptic free-boundary problem on a Riemannian manifold (M,g). In this paper we study the restrictions on the topology and geometry of the fibres (the level sets) of the solutions f to (P1). We give a technique based on certain remarkable property of the fibres (the analytic representation property) for going from the initial PDE to a global analytical characterization of the fibres (the equilibrium partition condition). We study this analytical characterization and obtain several topological and geometrical properties that the fibres of the solutions must possess, depending on the topology of M and the metric tensor g. We apply these results to the classical problem in physics of classifying the equilibrium shapes of both Newtonian and relativistic static self-gravitating fluids. We also suggest a relationship with the isometries of a Riemannian manifold.Comment: 36 pages. In this new version the analytic representation hypothesis is proved. Please address all correspondence to D. Peralta-Sala
    • …
    corecore