2,769 research outputs found

    Indoor localization based on multiple LEDs position estimation

    Get PDF
    This paper describes the simulation results and hardware implementation of an inexpensive, low-complexity LED based indoor positioning system. Localization by multiple LEDs estimation model (MLEM) approximates position of a mobile receiver by the acquisition of positional information from LED transmitters. Multiple LED orientation can either be with or without overlap. Receivers in a no-overlap LED orientation experience only single access while multiple access receivers are designed for orientations with overlaps. Single and multiple access systems were developed and implemented by the use of low cost ATMEG 328 microcontroller. Since multiple LEDs transmit data at the same wavelength and are asynchronous, overlap in multiple access system causes interference. The possibility of this interference is reduced by packet based pulse duration multiplexing (PDM) and a low duty cycle transmission protocol. By the use of MLEM, root mean square error in position estimation is reduced to about 1 percent of the length an indoor location. Experimental results show that overlap increases positional accuracy over a wider coverage region and that the multiple access system allows for a more reliable positioning

    Indoor visible light communication localization system utilizing received signal strength indication technique and trilateration method

    Get PDF
    Visible light communication (VLC) based on light-emitting diodes (LEDs) technology not only provides higher data rate for indoor wireless communications and offering room illumination but also has the potential for indoor localization. VLC-based indoor positioning using the received optical power levels from emitting LEDs is investigated. We consider both scenarios of line-of-sight (LOS) and LOS with non-LOS (LOSNLOS) positioning. The performance of the proposed system is evaluated under both noisy and noiseless channel as is the impact of different location codes on positioning error. The analytical model of the system with noise and the corresponding numerical evaluation for a range of signal-to-noise ratio (SNR) are presented. The results show that an accuracy of 12 dB

    An Implementation Approach and Performance Analysis of Image Sensor Based Multilateral Indoor Localization and Navigation System

    Full text link
    Optical camera communication (OCC) exhibits considerable importance nowadays in various indoor camera based services such as smart home and robot-based automation. An android smart phone camera that is mounted on a mobile robot (MR) offers a uniform communication distance when the camera remains at the same level that can reduce the communication error rate. Indoor mobile robot navigation (MRN) is considered to be a promising OCC application in which the white light emitting diodes (LEDs) and an MR camera are used as transmitters and receiver respectively. Positioning is a key issue in MRN systems in terms of accuracy, data rate, and distance. We propose an indoor navigation and positioning combined algorithm and further evaluate its performance. An android application is developed to support data acquisition from multiple simultaneous transmitter links. Experimentally, we received data from four links which are required to ensure a higher positioning accuracy

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Optical boundaries for LED-based indoor positioning system

    Get PDF
    Overlap of footprints of light emitting diodes (LEDs) increases the positioning accuracy of wearable LED indoor positioning systems (IPS) but such an approach assumes that the footprint boundaries are defined. In this work, we develop a mathematical model for defining the footprint boundaries of an LED in terms of a threshold angle instead of the conventional half or full angle. To show the effect of the threshold angle, we compare how overlaps and receiver tilts affect the performance of an LED-based IPS when the optical boundary is defined at the threshold angle and at the full angle. Using experimental measurements, simulations, and theoretical analysis, the effect of the defined threshold angle is estimated. The results show that the positional time when using the newly defined threshold angle is 12 times shorter than the time when the full angle is used. When the effect of tilt is considered, the threshold angle time is 22 times shorter than the full angle positioning time. Regarding accuracy, it is shown in this work that a positioning error as low as 230 mm can be obtained. Consequently, while the IPS gives a very low positioning error, a defined threshold angle reduces delays in an overlap-based LED IPS

    Design of improved IR protocol for LED indoor positioning system

    Get PDF
    In this work, we design an infrared protocol (IRP) for light emitting diode (LED) based indoor positioning. The designed IRP compensates for the shortcomings of other existing protocols when applied to the multiple LED estimation indoor positioning model (MLEM). MLEM uses overlap of LED beams to increase accuracy of positioning. The overlap sets up a multipoint-to-point optical communication channel. The existing protocols which are designed for point-to-point links, when modified to suit the MLEM overlapping region, show a high positioning time between 3 s and 4.5 s. These values are not desirable for real time tracking. A new protocol is therefore designed to reduce the positioning time. The protocol is implemented in an experimental MLEM design using ATmega 328 microcontroller hardware. The experimental results show the new protocol reduces the positioning time to 0.5 s

    Optimization of duty cycles for LED based indoor positioning system

    Get PDF
    • …
    corecore