73,368 research outputs found
Advanced Radio Resource Management for Multi Antenna Packet Radio Systems
In this paper, we propose fairness-oriented packet scheduling (PS) schemes
with power-efficient control mechanism for future packet radio systems. In
general, the radio resource management functionality plays an important role in
new OFDMA based networks. The control of the network resource division among
the users is performed by packet scheduling functionality based on maximizing
cell coverage and capacity satisfying, and certain quality of service
requirements. Moreover, multiantenna transmit-receive schemes provide
additional flexibility to packet scheduler functionality. In order to mitigate
inter-cell and co-channel interference problems in OFDMA cellular networks soft
frequency reuse with different power masks patterns is used. Stemming from the
earlier enhanced proportional fair scheduler studies for single-input
multiple-output (SIMO) and multiple-input multipleoutput (MIMO) systems, we
extend the development of efficient packet scheduling algorithms by adding
transmit power considerations in the overall priority metrics calculations and
scheduling decisions. Furthermore, we evaluate the proposed scheduling schemes
by simulating practical orthogonal frequency division multiple access (OFDMA)
based packet radio system in terms of throughput, coverage and fairness
distribution among users. As a concrete example, under reduced overall transmit
power constraint and unequal power distribution for different sub-bands, we
demonstrate that by using the proposed power-aware multi-user scheduling
schemes, significant coverage and fairness improvements in the order of 70% and
20%, respectively, can be obtained, at the expense of average throughput loss
of only 15%.Comment: 14 Pages, IJWM
Towards a sender-based TCP friendly rate control (TFRC) protocol
Pervasive communications are increasingly sent over mobile devices and personal digital assistants. This trend is currently observed by mobile phone service providers which have measured a significant increase in multimedia traffic. To better carry multimedia traffic, the IETF standardized a new TCP Friendly Rate Control (TFRC) protocol. However, the current receiver-based TFRC design is not well suited to resource limited end systems. In this paper, we propose a scheme to shift resource allocation and computation to the sender. This sender-based approach led us to develop a new algorithm for loss notification and loss-rate computation. We detail the complete implementation of a user-level prototype and demonstrate the gain obtained in terms of memory requirements and CPU processing compared to the current design. We also evaluate the performance obtained in terms of throughput smoothness and fairness with TCP and we note this shifting solves security issues raised by classical TFRC implementations
Field-based branch prediction for packet processing engines
Network processors have exploited many aspects of architecture design, such as employing multi-core, multi-threading and hardware accelerator, to support both the ever-increasing line rates and the higher complexity of network applications. Micro-architectural techniques like superscalar, deep pipeline and speculative execution provide an excellent method of improving performance without limiting either the scalability or flexibility, provided that the branch penalty is well controlled. However, it is difficult for traditional branch predictor to keep increasing the accuracy by using larger tables, due to the fewer variations in branch patterns of packet processing. To improve the prediction efficiency, we propose a flow-based prediction mechanism which caches the branch histories of packets with similar header fields, since they normally undergo the same execution path. For packets that cannot find a matching entry in the history table, a fallback gshare predictor is used to provide branch direction. Simulation results show that the our scheme achieves an average hit rate in excess of 97.5% on a selected set of network applications and real-life packet traces, with a similar chip area to the existing branch prediction architectures used in modern microprocessors
A reconfigurable optical header recognition system for optical packet routing applications
We demonstrate a reconfigurable all-optical packet processing system. The key device is a code-reconfigurable header decoder based on a fiber Bragg grating. The performance of the system is tested for different packet headers, and error-free operation is confirmed
Performance degradation due to multipath noise for narrowband OFDM systems: channel-based analysis and experimental determination
The performance of OFDM systems over a multipath channel can strongly degrade due to the propagation delay spread. The distortion of the received signal over the fast Fourier transform window is referred to as multipath noise. This work aims to analytically determine the performance loss due to multipath noise as a function of OFDM and channel parameters for narrowband OFDM systems. First, it is investigated whether it is possible to describe the multipath noise, varying over different OFDM packets due to the temporal variation of the channel, by an effective noise factor F-delay, from which the loss factor is directly determined. Second, the theory of room electromagnetics is applied to develop a closed-form expression for F-delay as a function of the OFDM and reverberation parameters. This analytical method is validated with excellent agreement. Finally, the loss factor is determined for IEEE 802.11 based on channel measurements in two large conference rooms, providing values up to 19 dB for an 800 ns cyclic prefix length
Q-AIMD: A Congestion Aware Video Quality Control Mechanism
Following the constant increase of the multimedia traffic, it seems necessary to allow transport protocols to be aware of the video quality of the transmitted flows rather than the throughput. This paper proposes a novel transport mechanism adapted to video flows. Our proposal, called Q-AIMD for video quality AIMD (Additive Increase Multiplicative Decrease), enables fairness in video quality while transmitting multiple video flows. Targeting video quality fairness allows improving the overall video quality for all transmitted flows, especially when the transmitted videos provide various types of content with different spatial resolutions. In addition, Q-AIMD mitigates the occurrence of network congestion events, and dissolves the congestion whenever it occurs by decreasing the video quality and hence the bitrate. Using different video quality metrics, Q-AIMD is evaluated with different video contents and spatial resolutions. Simulation results show that Q-AIMD allows an improved overall video quality among the multiple transmitted video flows compared to a throughput-based congestion control by decreasing significantly the quality discrepancy between them
- …
