146,179 research outputs found

    On The Multiparty Communication Complexity of Testing Triangle-Freeness

    Full text link
    In this paper we initiate the study of property testing in simultaneous and non-simultaneous multi-party communication complexity, focusing on testing triangle-freeness in graphs. We consider the coordinator\textit{coordinator} model, where we have kk players receiving private inputs, and a coordinator who receives no input; the coordinator can communicate with all the players, but the players cannot communicate with each other. In this model, we ask: if an input graph is divided between the players, with each player receiving some of the edges, how many bits do the players and the coordinator need to exchange to determine if the graph is triangle-free, or far\textit{far} from triangle-free? For general communication protocols, we show that O~(k(nd)1/4+k2)\tilde{O}(k(nd)^{1/4}+k^2) bits are sufficient to test triangle-freeness in graphs of size nn with average degree dd (the degree need not be known in advance). For simultaneous\textit{simultaneous} protocols, where there is only one communication round, we give a protocol that uses O~(kn)\tilde{O}(k \sqrt{n}) bits when d=O(n)d = O(\sqrt{n}) and O~(k(nd)1/3)\tilde{O}(k (nd)^{1/3}) when d=Ω(n)d = \Omega(\sqrt{n}); here, again, the average degree dd does not need to be known in advance. We show that for average degree d=O(1)d = O(1), our simultaneous protocol is asymptotically optimal up to logarithmic factors. For higher degrees, we are not able to give lower bounds on testing triangle-freeness, but we give evidence that the problem is hard by showing that finding an edge that participates in a triangle is hard, even when promised that at least a constant fraction of the edges must be removed in order to make the graph triangle-free.Comment: To Appear in PODC 201

    Streaming Lower Bounds for Approximating MAX-CUT

    Full text link
    We consider the problem of estimating the value of max cut in a graph in the streaming model of computation. At one extreme, there is a trivial 22-approximation for this problem that uses only O(logn)O(\log n) space, namely, count the number of edges and output half of this value as the estimate for max cut value. On the other extreme, if one allows O~(n)\tilde{O}(n) space, then a near-optimal solution to the max cut value can be obtained by storing an O~(n)\tilde{O}(n)-size sparsifier that essentially preserves the max cut. An intriguing question is if poly-logarithmic space suffices to obtain a non-trivial approximation to the max-cut value (that is, beating the factor 22). It was recently shown that the problem of estimating the size of a maximum matching in a graph admits a non-trivial approximation in poly-logarithmic space. Our main result is that any streaming algorithm that breaks the 22-approximation barrier requires Ω~(n)\tilde{\Omega}(\sqrt{n}) space even if the edges of the input graph are presented in random order. Our result is obtained by exhibiting a distribution over graphs which are either bipartite or 12\frac{1}{2}-far from being bipartite, and establishing that Ω~(n)\tilde{\Omega}(\sqrt{n}) space is necessary to differentiate between these two cases. Thus as a direct corollary we obtain that Ω~(n)\tilde{\Omega}(\sqrt{n}) space is also necessary to test if a graph is bipartite or 12\frac{1}{2}-far from being bipartite. We also show that for any ϵ>0\epsilon > 0, any streaming algorithm that obtains a (1+ϵ)(1 + \epsilon)-approximation to the max cut value when edges arrive in adversarial order requires n1O(ϵ)n^{1 - O(\epsilon)} space, implying that Ω(n)\Omega(n) space is necessary to obtain an arbitrarily good approximation to the max cut value

    Local Conflict Coloring

    Get PDF
    Locally finding a solution to symmetry-breaking tasks such as vertex-coloring, edge-coloring, maximal matching, maximal independent set, etc., is a long-standing challenge in distributed network computing. More recently, it has also become a challenge in the framework of centralized local computation. We introduce conflict coloring as a general symmetry-breaking task that includes all the aforementioned tasks as specific instantiations --- conflict coloring includes all locally checkable labeling tasks from [Naor\&Stockmeyer, STOC 1993]. Conflict coloring is characterized by two parameters ll and dd, where the former measures the amount of freedom given to the nodes for selecting their colors, and the latter measures the number of constraints which colors of adjacent nodes are subject to.We show that, in the standard LOCAL model for distributed network computing, if l/d \textgreater{} \Delta, then conflict coloring can be solved in O~(Δ)+logn\tilde O(\sqrt{\Delta})+\log^*n rounds in nn-node graphs with maximum degree Δ\Delta, where O~\tilde O ignores the polylog factors in Δ\Delta. The dependency in~nn is optimal, as a consequence of the Ω(logn)\Omega(\log^*n) lower bound by [Linial, SIAM J. Comp. 1992] for (Δ+1)(\Delta+1)-coloring. An important special case of our result is a significant improvement over the best known algorithm for distributed (Δ+1)(\Delta+1)-coloring due to [Barenboim, PODC 2015], which required O~(Δ3/4)+logn\tilde O(\Delta^{3/4})+\log^*n rounds. Improvements for other variants of coloring, including (Δ+1)(\Delta+1)-list-coloring, (2Δ1)(2\Delta-1)-edge-coloring, TT-coloring, etc., also follow from our general result on conflict coloring. Likewise, in the framework of centralized local computation algorithms (LCAs), our general result yields an LCA which requires a smaller number of probes than the previously best known algorithm for vertex-coloring, and works for a wide range of coloring problems
    corecore