680 research outputs found

    Independent paths and K5-subdivisions

    Get PDF
    A well known theorem of Kuratowski states that a graph is planar iff it contains no subdivision of K5 or K3,3. Seymour conjectured in 1977 that every 5-connected nonplanar graph contains a subdivision of K5. In this paper, we prove several results about independent paths (no vertex of a path is internal to another), which are then used to prove Seymour’s conjecture for two classes of graphs. These results will be used in a subsequent paper to prove Seymour’s conjecture for graphs containing K − 4, which is a step in a program to approach Seymour’s conjecture

    Induced minors and well-quasi-ordering

    Get PDF
    A graph HH is an induced minor of a graph GG if it can be obtained from an induced subgraph of GG by contracting edges. Otherwise, GG is said to be HH-induced minor-free. Robin Thomas showed that K4K_4-induced minor-free graphs are well-quasi-ordered by induced minors [Graphs without K4K_4 and well-quasi-ordering, Journal of Combinatorial Theory, Series B, 38(3):240 -- 247, 1985]. We provide a dichotomy theorem for HH-induced minor-free graphs and show that the class of HH-induced minor-free graphs is well-quasi-ordered by the induced minor relation if and only if HH is an induced minor of the gem (the path on 4 vertices plus a dominating vertex) or of the graph obtained by adding a vertex of degree 2 to the complete graph on 4 vertices. To this end we proved two decomposition theorems which are of independent interest. Similar dichotomy results were previously given for subgraphs by Guoli Ding in [Subgraphs and well-quasi-ordering, Journal of Graph Theory, 16(5):489--502, 1992] and for induced subgraphs by Peter Damaschke in [Induced subgraphs and well-quasi-ordering, Journal of Graph Theory, 14(4):427--435, 1990]
    • …
    corecore