3 research outputs found

    Independent domination in hereditary classes

    Get PDF
    AbstractWe investigate Independent Domination Problem within hereditary classes of graphs. Boliac and Lozin [Independent domination in finitely defined classes of graphs, Theoret. Comput. Sci. 301 (1–3) (2003) 271–284] proved some sufficient conditions for Independent Domination Problem to be NP-complete within finitely defined hereditary classes of graphs. They posed a question whether the conditions are also necessary. We show that the conditions are not necessary, since Independent Domination Problem is NP-hard within 2P3-free graphs.Moreover, we show that the problem remains NP-hard for a new hereditary class of graphs, called hereditary 3-satgraphs. We characterize hereditary 3-satgraphs in terms of forbidden induced subgraph. As corollaries, we prove that Independent Domination Problem is NP-hard within the class of all 2P3-free perfect graphs and for K1,5-free weakly chordal graphs.Finally, we compare complexity of Independent Domination Problem with that of Independent Set Problem for a hierarchy of hereditary classes recently proposed by Hammer and Zverovich [Construction of maximal stable sets with k-extensions, Combin. Probab. Comput. 13 (2004) 1–8]. For each class in the hierarchy, a maximum independent set can be found in polynomial time, and the hierarchy covers all graphs. However, our characterization of hereditary 3-satgraphs implies that Independent Domination Problem is NP-hard for almost all classes in the hierarchy. This fact supports a conjecture that Independent Domination is harder than Independent Set Problem within hereditary classes

    Total Domishold Graphs: a Generalization of Threshold Graphs, with Connections to Threshold Hypergraphs

    Full text link
    A total dominating set in a graph is a set of vertices such that every vertex of the graph has a neighbor in the set. We introduce and study graphs that admit non-negative real weights associated to their vertices such that a set of vertices is a total dominating set if and only if the sum of the corresponding weights exceeds a certain threshold. We show that these graphs, which we call total domishold graphs, form a non-hereditary class of graphs properly containing the classes of threshold graphs and the complements of domishold graphs, and are closely related to threshold Boolean functions and threshold hypergraphs. We present a polynomial time recognition algorithm of total domishold graphs, and characterize graphs in which the above property holds in a hereditary sense. Our characterization is obtained by studying a new family of hypergraphs, defined similarly as the Sperner hypergraphs, which may be of independent interest.Comment: 19 pages, 1 figur

    Author index

    Get PDF
    corecore